Advertisement

A systematic review on efficiency of microneme proteins to induce protective immunity against Toxoplasma gondii

  • Samira Dodangeh
  • Ahmad Daryani
  • Mehdi Sharif
  • Sargis A. Aghayan
  • Abdol Satar Pagheh
  • Shahabeddin SarviEmail author
  • Fatemeh Rezaei
Review

Abstract

Toxoplasma gondii is an intracellular parasite infecting almost all warm-blooded animals. Many studies on vaccination have been performed previously, and micronemal proteins (MICs) have crucial importance in this regard. The current review aims to reveal the efficiency of MICs as target antigen, adjuvants, animal models (species/strain), T. gondii strains for challenge infection, and routes of vaccine to prevent Toxoplasma infection. A comprehensive literature search was performed on April 18, 2018, in several known databases. Studies were included when evaluating vaccines based on MIC against T. gondii compared to that of a control group. Two independent researchers done the search process, study choice, and data extraction. A total of 28 articles published were selected for further analysis. Among them, 57.03% of the studies focused on MIC3 and its epitopes. SAG1 was further used in cocktail vaccines compared to other antigens. GM-CSF and Freund’s complete were the predominant adjuvants used. BALB/c mice have been introduced as a proper model for lethal challenge. Virulent T. gondii (RH) was utilized more than other strains for challenge. Among MICs, the results of vaccination with MIC1-4, MIC6, and PLP1 demonstrated significantly strong humoral and cellular immunity, increased survival time, and reduced cyst burden in the mice. This review summarizes the latest results on MIC-based vaccines and presents that the most effective vaccination procedure is the administration of the cocktail vaccines. Our survey can serve as a basis for further studies to develop more efficient novel vaccines against T. gondii for animals and humans.

Keywords

DNA vaccine Microneme proteins Recombinant vaccine Toxoplasmosis Vaccine candidates 

Notes

Acknowledgments

The authors would like to acknowledge Miss Tooran Nayeri and Miss Zahra Hosseini Nejad for their kind collaboration and the Student Research Committee, Mazandaran University of Medical Sciences, Sari, Iran, for their support to this study. This study was financially supported by the Vice-Chancellor of Mazandaran University of Medical Sciences (Project Number: 10221).

Compliance with ethical standards

Declaration of interests

The authors report that they have no conflicts of interest. The authors alone are responsible for the content and writing of the paper.

References

  1. 1.
    Dubey JP (2008) The history of Toxoplasma gondii—the first 100 years. J Eukaryot Microbiol 55(6):467–475PubMedCrossRefGoogle Scholar
  2. 2.
    Buxton D (1998) Protozoan infections (Toxoplasma gondii, Neospora caninum and Sarcocystis spp.) in sheep and goats: recent advances. Vet Res 29(3):289–310PubMedGoogle Scholar
  3. 3.
    Sarvi S, Daryani A, Rahimi MT, Aarabi M, Shokri A, Ahmadpour E, Mizani A, Sharif M (2015) Cattle toxoplasmosis in Iran: a systematic review and meta-analysis. Asian Pac J Trop Med 8(2):120–126PubMedCrossRefGoogle Scholar
  4. 4.
    Ahmadpour E, Daryani A, Sharif M, Sarvi S, Aarabi M, Mizani A, Rahimi MT, Shokri A (2014) Toxoplasmosis in immunocompromised patients in Iran: a systematic review and meta-analysis. The Journal of Infection in Developing Countries 8(12):1503–1510PubMedCrossRefGoogle Scholar
  5. 5.
    Escuissato DL, de Aguiar RO, Gasparetto EL, Müller NL (2004) Disseminated toxoplasmosis after bone marrow transplantation: high-resolution CT appearance. J Thorac Imaging 19(3):207–209PubMedCrossRefGoogle Scholar
  6. 6.
    Israelski DM, Remington JS (1993) Toxoplasmosis in patients with cancer. Clin Infect Dis 17(Supplement 2):S423–S435PubMedCrossRefGoogle Scholar
  7. 7.
    Kasper L, Buzoni-Gatel D (1998) Some opportunistic parasitic infections in AIDS: candidiasis, pneumocystosis, cryptosporidiosis, toxoplasmosis. Parasitol Today 14(4):150–156PubMedCrossRefGoogle Scholar
  8. 8.
    Mizani A, Alipour A, Sharif M, Sarvi S, Amouei A, Shokri A, Rahimi M-T, Hosseini SA, Daryani A (2017) Toxoplasmosis seroprevalence in Iranian women and risk factors of the disease: a systematic review and meta-analysis. Tropical Medicine and Health 45(1):7PubMedPubMedCentralCrossRefGoogle Scholar
  9. 9.
    Montazeri M, Sharif M, Sarvi S, Mehrzadi S, Ahmadpour E, Daryani A (2017) A systematic review of in vitro and in vivo activities of anti-toxoplasma drugs and compounds (2006–2016). Front Microbiol 8Google Scholar
  10. 10.
    Eldin HME, Kamel HH, Badawy AF, Shash LS (2015) A comparative study between excretory/secretory and autoclaved vaccines against RH strain of Toxoplasma gondii in murine models. J Parasit Dis 39(3):526–535CrossRefGoogle Scholar
  11. 11.
    Wu X-N, Lin J, Lin X, Chen J, Chen Z-L, Lin J-Y (2012) Multicomponent DNA vaccine-encoding Toxoplasma gondii GRA1 and SAG1 primes: anti-Toxoplasma immune response in mice. Parasitol Res 111(5):2001–2009PubMedPubMedCentralCrossRefGoogle Scholar
  12. 12.
    Parthasarathy S, Fong MY, Ramaswamy K, Lau YL (2013) Protective immune response in BALB/c mice induced by DNA vaccine of the ROP8 gene of Toxoplasma gondii. The American Journal of Tropical Medicine and Hygiene 88(5):883–887PubMedPubMedCentralCrossRefGoogle Scholar
  13. 13.
    Pinzan CF, Sardinha-Silva A, Almeida F, Lai L, Lopes CD, Lourenço EV, Panunto-Castelo A, Matthews S, Roque-Barreira MC (2015) Vaccination with recombinant microneme proteins confers protection against experimental toxoplasmosis in mice. PLoS One 10(11):e0143087PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Macêdo Junior AG, Cunha Junior JP, Cardoso THS, Silva MV, M Santiago F, Silva JS, Pirovani CP, Silva DAO, Mineo JR, Mineo TWP (2013) SAG2A protein from Toxoplasma gondii interacts with both innate and adaptive immune compartments of infected hosts. Parasit Vectors 6:163Google Scholar
  15. 15.
    Dobrowolski JM, Carruthers VB, Sibley LD (1997) Participation of myosin in gliding motility and host cell invasion by Toxoplasma gondii. Mol Microbiol 26(1):163–173PubMedCrossRefGoogle Scholar
  16. 16.
    Meissner M, Schluter D, Soldati D (2002) Role of Toxoplasma gondii myosin A in powering parasite gliding and host cell invasion. Science 298(5594):837–840PubMedCrossRefGoogle Scholar
  17. 17.
    Liu Q, Li FC, Zhou CX, Zhu XQ (2017) Research advances in interactions related to Toxoplasma gondii microneme proteins. Exp Parasitol 176:89–98PubMedCrossRefGoogle Scholar
  18. 18.
    Cérède O, Dubremetz JF, Soête M, Deslée D, Vial H, Bout D, Lebrun M (2005) Synergistic role of micronemal proteins in Toxoplasma gondii virulence. J Exp Med 201(3):453–463PubMedPubMedCentralCrossRefGoogle Scholar
  19. 19.
    Wang Y, Yin H (2015) Research advances in microneme protein 3 of Toxoplasma gondii. Parasit Vectors 8(1):384PubMedPubMedCentralCrossRefGoogle Scholar
  20. 20.
    Moher D, Liberati A, Tetzlaff J, Altman DG, Group P (2009) Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 6(7):e1000097PubMedPubMedCentralCrossRefGoogle Scholar
  21. 21.
    Hooijmans CR, Rovers MM, de Vries RB, Leenaars M, Ritskes-Hoitinga M, Langendam MW (2014) SYRCLE’s risk of bias tool for animal studies. BMC Med Res Methodol 14:43PubMedPubMedCentralCrossRefGoogle Scholar
  22. 22.
    Lourenço EV, Bernardes ES, Silva NM, Mineo JR, Panunto-Castelo A, Roque-Barreira M-C (2006) Immunization with MIC1 and MIC4 induces protective immunity against Toxoplasma gondii. Microbes Infect 8(5):1244–1251PubMedCrossRefGoogle Scholar
  23. 23.
    Beghetto E, Nielsen HV, Del Porto P, Buffolano W, Guglietta S, Felici F, Petersen E, Gargano N (2005) A combination of antigenic regions of Toxoplasma gondii microneme proteins induces protective immunity against oral infection with parasite cysts. J Infect Dis 191(4):637–645PubMedCrossRefGoogle Scholar
  24. 24.
    Dautu G, Munyaka B, Carmen G, Zhang G, Omata Y, Xuenan X, Igarashi M (2007) Toxoplasma gondii: DNA vaccination with genes encoding antigens MIC2, M2AP, AMA1 and BAG1 and evaluation of their immunogenic potential. Exp Parasitol 116(3):273–282PubMedCrossRefGoogle Scholar
  25. 25.
    Rosenberg C, De Craeye S, Jongert E, Gargano N, Beghetto E, Del Porto P, Vorup-Jensen T, Petersen E (2009) Induction of partial protection against infection with Toxoplasma gondii genotype II by DNA vaccination with recombinant chimeric tachyzoite antigens. Vaccine 27(18):2489–2498PubMedCrossRefGoogle Scholar
  26. 26.
    Ismael AB, Sekkai D, Collin C, Bout D, Mévélec M-N (2003) The MIC3 gene of Toxoplasma gondii is a novel potent vaccine candidate against toxoplasmosis. Infect Immun 71(11):6222–6228PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Xiang W, Qiong Z, Li-peng L, Kui T, Jian-wu G, Heng-ping S (2009) The location of invasion-related protein MIC3 of Toxoplasma gondii and protective effect of its DNA vaccine in mice. Vet Parasitol 166:1):1–1):7PubMedCrossRefGoogle Scholar
  28. 28.
    Fang R, Nie H, Wang Z, Tu P, Zhou D, Wang L, He L, Zhou Y, Zhao J (2009) Protective immune response in BALB/c mice induced by a suicidal DNA vaccine of the MIC3 gene of Toxoplasma gondii. Vet Parasitol 164(2):134–140PubMedCrossRefGoogle Scholar
  29. 29.
    Ismael AB, Hedhli D, Cérède O, Lebrun M, Dimier-Poisson I, Mévélec M-N (2009) Further analysis of protection induced by the MIC3 DNA vaccine against T. gondii: CD4 and CD8 T cells are the major effectors of the MIC3 DNA vaccine-induced protection, both lectin-like and EGF-like domains of MIC3 conferred protection. Vaccine 27(22):2959–2966PubMedCrossRefGoogle Scholar
  30. 30.
    Qu D, Yu H, Wang S, Cai W, Du A (2009) Induction of protective immunity by multiantigenic DNA vaccine delivered in attenuated Salmonella typhimurium against Toxoplasma gondii infection in mice. Vet Parasitol 166(3):220–227PubMedCrossRefGoogle Scholar
  31. 31.
    Fang R, Feng H, Hu M, Khan MK, Wang L, Zhou Y, Zhao J (2012) Evaluation of immune responses induced by SAG1 and MIC3 vaccine cocktails against Toxoplasma gondii. Vet Parasitol 187(1):140–146PubMedCrossRefGoogle Scholar
  32. 32.
    Qu D, Han J, Du A (2013) Evaluation of protective effect of multiantigenic DNA vaccine encoding MIC3 and ROP18 antigen segments of Toxoplasma gondii in mice. Parasitol Res 112(7):2593–2599PubMedCrossRefGoogle Scholar
  33. 33.
    Ghaffarifar F, Naserifar R, Jafari Madrak M (2014) Eukaryotic plasmids with Toxoplasma gondii dense granule antigen (GRA 5) and microneme 3 (MIC3) genes as a cocktail DNA vaccine and evaluation of immune responses in BALB/C mice. J Clin Med Genom 3 (121):2Google Scholar
  34. 34.
    Gong P, Cao L, Guo Y, Dong H, Yuan S, Yao X, Ren W, Yao L, Xu Z, Sun Q (2016) Toxoplasma gondii: protective immunity induced by a DNA vaccine expressing GRA1 and MIC3 against toxoplasmosis in BALB/c mice. Exp Parasitol 166:131–136PubMedCrossRefGoogle Scholar
  35. 35.
    Wang H, He S, Yao Y, Cong H, Zhao H, Li T, Zhu X-Q (2009) Toxoplasma gondii: protective effect of an intranasal SAG1 and MIC4 DNA vaccine in mice. Exp Parasitol 122(3):226–232PubMedCrossRefGoogle Scholar
  36. 36.
    Peng G, Yuan Z, Zhou D, He X, Yan C, Yin C, He Y, Lin R, Song H, Zhu X (2010) Sequence variation in Toxoplasma gondii MIC4 gene and protective effect of an MIC4 DNA vaccine in a murine model against toxoplasmosis. J Anim Vet Adv 9:1463–1468CrossRefGoogle Scholar
  37. 37.
    Peng G-H, Yuan Z-G, Zhou D-H, He X-H, Liu M-M, Yan C, Yin C-C, He Y, Lin R-Q, Zhu X-Q (2009) Toxoplasma gondii microneme protein 6 (MIC6) is a potential vaccine candidate against toxoplasmosis in mice. Vaccine 27(47):6570–6574PubMedCrossRefGoogle Scholar
  38. 38.
    Yan H-K, Yuan Z-G, Song H-Q, Petersen E, Zhou Y, Ren D, Zhou D-H, Li H-X, Lin R-Q, Yang G-L (2012) Vaccination with a DNA vaccine coding perforin-like protein 1 (TgPLP1) and MIC6 induces significant protective immunity against Toxoplasma gondii. Clin Vaccine Immunol:CVI. 05578–05511Google Scholar
  39. 39.
    Yin H, Zhao L, Wang T, Zhou H, He S, Cong H (2015) A Toxoplasma gondii vaccine encoding multistage antigens in conjunction with ubiquitin confers protective immunity to BALB/c mice against parasite infection. Parasit Vectors 8(1):498PubMedPubMedCentralCrossRefGoogle Scholar
  40. 40.
    Liu M, Yuan Z, Peng G, Zhou D, He X, Yan C, Yin C, He Y, Lin R, Song H (2010) Toxoplasma gondii microneme protein 8 (MIC8) is a potential vaccine candidate against toxoplasmosis. Parasitol Res 106(5):1079–1084PubMedCrossRefGoogle Scholar
  41. 41.
    Yao Y, He S, Wang H, Zhou H, Zhao H, Li T, Xue M, Zhu X (2010) Protective immunity induced in mice by multiantigenic DNA vaccine with genes encoding SAG1 and MIC8 of Toxoplasma gondii. Zhongguo ji sheng chong xue yu ji sheng chong bing za zhi = Chinese Journal of Parasitology & Parasitic Diseases 28(2):81–88Google Scholar
  42. 42.
    Zhao H, Huang F, Guo J, Tan G (2013) Evaluation on the immune response induced by DNA vaccine encoding MIC8 co-immunized with IL-12 genetic adjuvant against Toxoplasma gondii infection. Zhongguo ji sheng chong xue yu ji sheng chong bing za zhi = Chinese Journal of Parasitology & Parasitic Diseases 31(4):284–289Google Scholar
  43. 43.
    Tao Q, Fang R, Zhang W, Wang Y, Cheng J, Li Y, Fang K, Khan MK, Hu M, Zhou Y (2013) Protective immunity induced by a DNA vaccine-encoding Toxoplasma gondii microneme protein 11 against acute toxoplasmosis in BALB/c mice. Parasitol Res 112(8):2871–2877PubMedCrossRefGoogle Scholar
  44. 44.
    Yuan Z-G, Ren D, Zhou D-H, Zhang X-X, Petersen E, Li X-Z, Zhou Y, Yang G-L, Zhu X-Q (2013) Evaluation of protective effect of pVAX-TgMIC13 plasmid against acute and chronic Toxoplasma gondii infection in a murine model. Vaccine 31(31):3135–3139PubMedCrossRefGoogle Scholar
  45. 45.
    Jongert E, Verhelst D, Abady M, Petersen E, Gargano N (2008) Protective Th1 immune responses against chronic toxoplasmosis induced by a protein–protein vaccine combination but not by its DNA–protein counterpart. Vaccine 26(41):5289–5295PubMedCrossRefGoogle Scholar
  46. 46.
    Nie H, Fang R, Xiong B-Q, Wang L-X, Hu M, Zhou Y-Q, Zhao J-L (2011) Immunogenicity and protective efficacy of two recombinant pseudorabies viruses expressing Toxoplasma gondii SAG1 and MIC3 proteins. Vet Parasitol 181(2):215–221PubMedCrossRefGoogle Scholar
  47. 47.
    Yang D, Liu J, Hao P, Wang J, Lei T, Shan D, Liu Q (2015) MIC3, a novel cross-protective antigen expressed in Toxoplasma gondii and Neospora caninum. Parasitol Res 114(10):3791–3799PubMedCrossRefGoogle Scholar
  48. 48.
    Lee S, Kim A, Lee D, Rubino I, Choi H, Quan F (2017) Protection induced by virus-like particles containing Toxoplasma gondii microneme protein 8 against highly virulent RH strain of Toxoplasma gondii infection. PLoS One 12(4):e0175644PubMedPubMedCentralCrossRefGoogle Scholar
  49. 49.
    Buxton D, Thomson K, Maley S, Wright S, Bos H (1991) Vaccination of sheep with a live incomplete strain (S48) of Toxoplasma gondii and their immunity to challenge when pregnant. The Veterinary Record 129(5):89–93PubMedCrossRefGoogle Scholar
  50. 50.
    Buxton D, Innes E (1995) A commercial vaccine for ovine toxoplasmosis. Parasitology 110(S1):S11–S16PubMedCrossRefGoogle Scholar
  51. 51.
    Innes EA (2010) Vaccination against Toxoplasma gondii: an increasing priority for collaborative research? Expert Review of Vaccines 9(10):1117–1119PubMedCrossRefGoogle Scholar
  52. 52.
    Cérède O, Dubremetz JF, Bout D, Lebrun M (2002) The Toxoplasma gondii protein MIC3 requires pro-peptide cleavage and dimerization to function as adhesin. EMBO J 21(11):2526–2536PubMedPubMedCentralCrossRefGoogle Scholar
  53. 53.
    Lepage AC, Buzoni-Gatel D, Bout DT, Kasper LH (1998) Gut-derived intraepithelial lymphocytes induce long term immunity against Toxoplasma gondii. J Immunol 161(9):4902–4908PubMedGoogle Scholar
  54. 54.
    Frank R (2002) The SPOT-synthesis technique: synthetic peptide arrays on membrane supports—principles and applications. J Immunol Methods 267(1):13–26PubMedCrossRefGoogle Scholar
  55. 55.
    Wang Y, Wang G, Cai J, Yin H (2016) Review on the identification and role of Toxoplasma gondii antigenic epitopes. Parasitol Res 115(2):459–468PubMedCrossRefGoogle Scholar
  56. 56.
    Mohamed RM, Aosai F, Chen M, Mun H-S, Norose K, Belal US, Piao L-X, Yano A (2003) Induction of protective immunity by DNA vaccination with Toxoplasma gondii HSP70, HSP30 and SAG1 genes. Vaccine 21(21):2852–2861PubMedCrossRefGoogle Scholar
  57. 57.
    Sun X-M, Zou J, AA ES, Yan W-C, Liu X-Y, Suo X, Wang H, Chen Q-J (2011) DNA vaccination with a gene encoding Toxoplasma gondii GRA6 induces partial protection against toxoplasmosis in BALB/c mice. Parasit Vectors 4(1):213PubMedPubMedCentralCrossRefGoogle Scholar
  58. 58.
    Jongert E, Roberts CW, Gargano N, Förster-Waldl E, Petersen E (2009) Vaccines against Toxoplasma gondii: challenges and opportunities. Memorias do Instituto Oswaldo Cruz 104(2):252–266PubMedCrossRefGoogle Scholar
  59. 59.
    Hiszczyńska-Sawicka E, Li H, Xu J, Akhtar M, Holec-Gąsior L, Kur J, Bickerstaffe R, Stankiewicz M (2012) Induction of immune responses in sheep by vaccination with liposome-entrapped DNA complexes encoding Toxoplasma gondii MIC3 gene. Pol J Vet Sci 15(1):3–9PubMedCrossRefGoogle Scholar
  60. 60.
    Henriquez FL, Woods S, Cong H, McLeod R, Roberts CW (2010) Immunogenetics of Toxoplasma gondii informs vaccine design. Trends Parasitol 26(11):550–555PubMedCrossRefGoogle Scholar
  61. 61.
    Boyle JP, Rajasekar B, Saeij JP, Ajioka JW, Berriman M, Paulsen I, Roos DS, Sibley LD, White MW, Boothroyd JC (2006) Just one cross appears capable of dramatically altering the population biology of a eukaryotic pathogen like Toxoplasma gondii. Proc Natl Acad Sci 103(27):10514–10519PubMedCrossRefGoogle Scholar
  62. 62.
    Carneiro ACAV, Andrade GMQ, Costa JGL, Pinheiro BV, Vasconcelos-Santos DV, Ferreira AM, Su C, Januario JN, Vitor RWA (2013) Genetic characterization of Toxoplasma gondii revealed highly diverse genotypes for isolates from newborns with congenital toxoplasmosis in southeastern Brazil. J Clin Microbiol 51(3):901–907PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Ferreira ADM, Vitor RWA, Gazzinelli RT, Melo MN (2006) Genetic analysis of natural recombinant Brazilian Toxoplasma gondii strains by multilocus PCR–RFLP. Infect Genet Evol 6(1):22–31CrossRefGoogle Scholar
  64. 64.
    Howe DK, Honore S, Derouin F, Sibley LD (1997) Determination of genotypes of Toxoplasma gondii strains isolated from patients with toxoplasmosis. J Clin Microbiol 35(6):1411–1414PubMedPubMedCentralGoogle Scholar
  65. 65.
    Mordue DG, Hunter CA Innate immunity toToxoplasma gondii—chapter 24Google Scholar
  66. 66.
    Kur J, Holec-Gąsior L, Hiszczyńska-Sawicka E (2009) Current status of toxoplasmosis vaccine development. Expert Review of Vaccines 8(6):791–808PubMedCrossRefGoogle Scholar
  67. 67.
    Foroutan M, Zaki L, Ghaffarifar F (2018) Recent progress in microneme-based vaccines development against Toxoplasma gondii. Clinical and Experimental Vaccine Research 7(2):93–103PubMedPubMedCentralCrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Samira Dodangeh
    • 1
    • 2
  • Ahmad Daryani
    • 1
  • Mehdi Sharif
    • 1
  • Sargis A. Aghayan
    • 3
  • Abdol Satar Pagheh
    • 1
    • 2
  • Shahabeddin Sarvi
    • 1
    • 4
    Email author
  • Fatemeh Rezaei
    • 1
    • 2
  1. 1.Toxoplasmosis Research CenterMazandaran University of Medical SciencesSariIran
  2. 2.Student Research Committee, School of MedicineMazandaran University of Medical SciencesSariIran
  3. 3.Laboratory of Zoology, Research Institute of BiologyYerevan State UniversityYerevanRepublic of Armenia
  4. 4.Department of Medical Parasitology, School of MedicineMazandaran University of Medical SciencesSariIran

Personalised recommendations