Advertisement

Impact of rapid diagnosis of Staphylococcus aureus bacteremia from positive blood cultures on patient management

  • M. P. Romero-Gómez
  • E. Cendejas-Bueno
  • J. García Rodriguez
  • J. Mingorance
Original Article

Abstract

We have performed a retrospective, before–after comparison of turnaround time and therapy adjustment parameters before and after the introduction of matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) plus mecA polymerase chain reaction (PCR) for the identification of methicillin-resistant Staphylococcus aureus (MRSA) in positive blood cultures. There were 227 episodes of S. aureus bacteremia during the study periods. The pre-MALDI-TOF and post-MALDI-TOF groups included 133 and 94 patients, respectively. The two rapid methods performed sequentially decreased the turnaround time of MRSA identification by nearly 50% (2.06 ± 1.95 vs. 3.95 ± 1.70 days). There was no significant reduction in the length of hospitalization (28.27 ± 32.16 vs. 28.62 ± 28.75 days). In both groups, the adequacy of the empirical antibacterial therapy was similar (59.49% vs. 51.31%), but the optimization of the therapy was more frequent in the post-MALDI-TOF group. Routine implementation of these techniques provides results earlier than conventional methods and increases the proportion of episodes with adequate change of empirical to directed antimicrobial therapy.

Notes

Funding

None.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This retrospective study is pending of approval by the ethical committee of the University Hospital La Paz.

Informed consent

Not required.

References

  1. 1.
    Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S et al (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771.  https://doi.org/10.1001/jama.298.15.1763 CrossRefPubMedGoogle Scholar
  2. 2.
    Laupland KB, Ross T, Gregson DB (2008) Staphylococcus aureus bloodstream infections: risk factors, outcomes, and the influence of methicillin resistance in Calgary, Canada, 2000–2006. J Infect Dis 198:336–343.  https://doi.org/10.1086/589717 CrossRefPubMedGoogle Scholar
  3. 3.
    Lodise TP, McKinnon PS, Swiderski L, Rybak MJ (2003) Outcomes analysis of delayed antibiotic treatment for hospital-acquired Staphylococcus aureus bacteremia. Clin Infect Dis 36:1418–1423.  https://doi.org/10.1086/375057 CrossRefPubMedGoogle Scholar
  4. 4.
    Fortún J, Pérez-Molina JA, Añón MT, Martínez-Beltrán J, Loza E, Guerrero A (1995) Right-sided endocarditis caused by Staphylococcus aureus in drug abusers. Antimicrob Agents Chemother 39:525–528CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Fortún J, Navas E, Martínez-Beltrán J, Pérez-Molina J, Martín-Dávila P, Guerrero A et al (2001) Short-course therapy for right-side endocarditis due to Staphylococcus aureus in drug abusers: cloxacillin versus glycopeptides in combination with gentamicin. Clin Infect Dis 33:120–125.  https://doi.org/10.1086/320869 CrossRefPubMedGoogle Scholar
  6. 6.
    Tong SYC, Davis JS, Eichenberger E, Holland TL, Fowler VG Jr (2015) Staphylococcus aureus infections: epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev 28:603–661.  https://doi.org/10.1128/CMR.00134-14 CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Lodise TP Jr, McKinnon PS, Levine DP, Rybak MJ (2007) Impact of empirical-therapy selection on outcomes of intravenous drug users with infective endocarditis caused by methicillin-susceptible Staphylococcus aureus. Antimicrob Agents Chemother 51:3731–3733.  https://doi.org/10.1128/AAC.00101-07 CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Kim S-H, Kim K-H, Kim H-B, Kim N-J, Kim E-C, Oh M-D et al (2008) Outcome of vancomycin treatment in patients with methicillin-susceptible Staphylococcus aureus bacteremia. Antimicrob Agents Chemother 52:192–197.  https://doi.org/10.1128/AAC.00700-07 CrossRefPubMedGoogle Scholar
  9. 9.
    Schweizer ML, Furuno JP, Harris AD, Johnson JK, Shardell MD, McGregor JC et al (2011) Comparative effectiveness of nafcillin or cefazolin versus vancomycin in methicillin-susceptible Staphylococcus aureus bacteremia. BMC Infect Dis 11:279.  https://doi.org/10.1186/1471-2334-11-279 CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Davies J, Gordon CL, Tong SYC, Baird RW, Davis JS (2012) Impact of results of a rapid Staphylococcus aureus diagnostic test on prescribing of antibiotics for patients with clustered gram-positive cocci in blood cultures. J Clin Microbiol 50:2056–2058.  https://doi.org/10.1128/JCM.06773-11 CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Frye AM, Baker CA, Rustvold DL, Heath KA, Hunt J, Leggett JE et al (2012) Clinical impact of a real-time PCR assay for rapid identification of staphylococcal bacteremia. J Clin Microbiol 50:127–133.  https://doi.org/10.1128/JCM.06169-11 CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Romero-Gómez MP, Quiles-Melero I, Navarro C, Paño-Pardo JR, Gómez-Gil R, Mingorance J (2012) Evaluation of the BinaxNOW PBP2a assay for the direct detection of methicillin resistance in Staphylococcus aureus from positive blood culture bottles. Diagn Microbiol Infect Dis 72:282–284.  https://doi.org/10.1016/j.diagmicrobio.2011.11.012 CrossRefPubMedGoogle Scholar
  13. 13.
    Romero-Gómez MP, Gómez-Gil R, Paño-Pardo JR, Mingorance J (2012) Identification and susceptibility testing of microorganism by direct inoculation from positive blood culture bottles by combining MALDI-TOF and Vitek-2 Compact is rapid and effective. J Infect 65:513–520.  https://doi.org/10.1016/j.jinf.2012.08.013 CrossRefPubMedGoogle Scholar
  14. 14.
    Pescador P, Romero-Gómez MP, Gómez Gil R, Mingorance J (2016) Evaluation of combined use of the MALDI-TOF and GenomEra MRSA/SA assay for the direct detection of methicillin resistance in Staphylococcus aureus from positive blood culture bottles. Enferm Infecc Microbiol Clin 34:687–688.  https://doi.org/10.1016/j.eimc.2016.01.008 CrossRefPubMedGoogle Scholar
  15. 15.
    Rossney AS, Herra CM, Brennan GI, Morgan PM, O’Connell B (2008) Evaluation of the Xpert methicillin-resistant Staphylococcus aureus (MRSA) assay using the GeneXpert real-time PCR platform for rapid detection of MRSA from screening specimens. J Clin Microbiol 46:3285–3290.  https://doi.org/10.1128/JCM.02487-07 CrossRefPubMedPubMedCentralGoogle Scholar
  16. 16.
    Romero-Gómez MP, Muñoz-Velez M, Gómez-Gil R, Mingorance J (2013) Evaluation of combined use of MALDI-TOF and Xpert(®) MRSA/SA BC assay for the direct detection of methicillin resistance in Staphylococcus aureus from positive blood culture bottles. J Infect 67:91–92.  https://doi.org/10.1016/j.jinf.2013.03.014 CrossRefPubMedGoogle Scholar
  17. 17.
    Romero-Gómez MP, Mingorance J (2011) The effect of the blood culture bottle type in the rate of direct identification from positive cultures by matrix-assisted laser desorption/ionisation time-of-flight (MALDI-TOF) mass spectrometry. J Infect 62:251–253.  https://doi.org/10.1016/j.jinf.2010.12.008 CrossRefPubMedGoogle Scholar
  18. 18.
    Schmidt V, Jarosch A, März P, Sander C, Vacata V, Kalka-Moll W (2012) Rapid identification of bacteria in positive blood culture by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Eur J Clin Microbiol Infect Dis 31:311–317.  https://doi.org/10.1007/s10096-011-1312-0 CrossRefPubMedGoogle Scholar
  19. 19.
    Loonen AJM, Jansz AR, Stalpers J, Wolffs PFG, van den Brule AJC (2012) An evaluation of three processing methods and the effect of reduced culture times for faster direct identification of pathogens from BacT/ALERT blood cultures by MALDI-TOF MS. Eur J Clin Microbiol Infect Dis 31:1575–1583.  https://doi.org/10.1007/s10096-011-1480-y CrossRefPubMedGoogle Scholar
  20. 20.
    Vlek ALM, Bonten MJM, Boel CHE (2012) Direct matrix-assisted laser desorption ionization time-of-flight mass spectrometry improves appropriateness of antibiotic treatment of bacteremia. PLoS One 7:e32589.  https://doi.org/10.1371/journal.pone.0032589 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Moussaoui W, Jaulhac B, Hoffmann A-M, Ludes B, Kostrzewa M, Riegel P et al (2010) Matrix-assisted laser desorption ionization time-of-flight mass spectrometry identifies 90% of bacteria directly from blood culture vials. Clin Microbiol Infect 16:1631–1638.  https://doi.org/10.1111/j.1469-0691.2010.03356.x CrossRefPubMedGoogle Scholar
  22. 22.
    Gherardi G, Angeletti S, Panitti M, Pompilio A, Di Bonaventura G, Crea F et al (2012) Comparative evaluation of the Vitek-2 Compact and Phoenix systems for rapid identification and antibiotic susceptibility testing directly from blood cultures of Gram-negative and Gram-positive isolates. Diagn Microbiol Infect Dis 72:20–31.  https://doi.org/10.1016/j.diagmicrobio.2011.09.015 CrossRefPubMedGoogle Scholar
  23. 23.
    Trienski TL, Barrett HL, Pasquale TR, DiPersio JR, File TM Jr (2013) Evaluation and use of a rapid Staphylococcus aureus assay by an antimicrobial stewardship program. Am J Health Syst Pharm 70:1908–1912.  https://doi.org/10.2146/ajhp130118 CrossRefPubMedGoogle Scholar
  24. 24.
    Kullar R, McKinnell JA, Sakoulas G (2014) Avoiding the perfect storm: the biologic and clinical case for reevaluating the 7-day expectation for methicillin-resistant Staphylococcus aureus bacteremia before switching therapy. Clin Infect Dis 59:1455–1461.  https://doi.org/10.1093/cid/ciu583 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Drew RH (2009) Antimicrobial stewardship programs: how to start and steer a successful program. J Manag Care Pharm 15:S18–S23PubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • M. P. Romero-Gómez
    • 1
  • E. Cendejas-Bueno
    • 1
  • J. García Rodriguez
    • 1
  • J. Mingorance
    • 1
  1. 1.Servicio de Microbiología ClínicaHospital Universitario La Paz, IdiPAZMadridSpain

Personalised recommendations