The clinical significance of pneumonia in patients with respiratory specimens harbouring multidrug-resistant Pseudomonas aeruginosa: a 5-year retrospective study following 5667 patients in four general ICUs

  • B. BorgattaEmail author
  • S. Gattarello
  • C. A. Mazo
  • A. T. Imbiscuso
  • M. N. Larrosa
  • M. Lujàn
  • J. Rello
Original Article


Pseudomonas aeruginosa is the leading cause of pneumonia in intensive care units (ICUs), with multidrug-resistant (MDR) strains posing a serious threat. The aim of this study was to assess the clinical relevance of MDR Pseudomonas isolates in respiratory clinical specimens. A 5-year retrospective observational study in four medical-surgical ICUs from a referral hospital was carried out. Of 5667 adults admitted to the ICU, 69 had MDR-PA in respiratory samples: 31 were identified as having pneumonia (HAP/VAP): 21 ventilator-associated pneumonia (VAP) and ten hospital-acquired pneumonia (HAP). Twenty-one (67.7%) adults with MDR-PA HAP/VAP died after a median of 4 days (18 of the 21 deaths within 8 days), compared with one (2.6%) without pneumonia at day 8. In a Cox proportional regression model, MDR-PA pneumonia was an independent variable [adjusted hazard ratio (aHR) 5.92] associated with 30-day ICU mortality. Most strains (85.1%) were susceptible to amikacin and colistin. Resistance to beta-lactams (third-generation cephalosporins and piperacillin–tazobactam) ranged from 44.1% to 45.3%. Meropenem showed poor overall activity (MIC[50/90] 16/32 mg/dL), with 47.0% having a minimum inhibitory concentration (MIC) breakpoint >8 mg/L. Twenty-four (77.4%) HAP/VAP episodes received inappropriate empirical therapy. Although empirical combination therapy was associated with less inappropriate therapy than monotherapy (16.7% vs. 88.3%, p < 0.01), there was no difference in survival (30% vs. 33.3%, p = 0.8). Pneumonia was identified in one-third of adult ICU patients harbouring MDR-PA in respiratory clinical specimens. These patients have a 6-fold risk of (early) death compared to ventilator-associated tracheobronchitis (VAT) and respiratory colonisation. New antibiotics and adjuvant therapies are urgently needed to prevent and treat MDR-PA HAP/VAP.



Part of the statistical analysis was carried out in the Statistical and Bioinformatics Unit (UEB) of the Vall d’Hebron Hospital Research Institute (VHIR). We would like to thank Michael Maudsley and Dr. David Thompson for their professional writing services.

Compliance with ethical standards


This study was supported in part by Beca Rio Hortega—Instituto de Salud Carlos III [CM 14/00212], Beca FIS [PI12/02903], Beca SEPAR [155/2015], Beca Agaur [2014-AGAUR-278], CIBERES-PCI Pneumonia and Fondos FEDER.

Conflict of interest

J.R. is on the speaker bureau for Cubist, AstraZeneca, MedImmune, Kenta, Pfizer, Genentech and Paratek. The other authors have no conflicts of interest to report.

Ethical approval

The study was approved by the local institutional review board, with the identification ‘PR_AG_247-2012’.

Informed consent

Informed consent was waived due to the observational nature of the study.

Supplementary material

10096_2017_3039_MOESM1_ESM.pdf (183 kb)
ESM 1 (PDF 182 kb)


  1. 1.
    Vincent JL, Rello J, Marshall J et al (2009) International study of the prevalence and outcomes of infection in intensive care units. JAMA 302:2323–2329CrossRefPubMedGoogle Scholar
  2. 2.
    Nathwani D, Raman G, Sulham K et al (2014) Clinical and economic consequences of hospital-acquired resistant and multidrug-resistant Pseudomonas aeruginosa infections: a systematic review and meta-analysis. Antimicrob Resist Infect Control 3:32CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Tejerina E, Frutos-Vivar F, Restrepo MI et al (2006) Incidence, risk factors, and outcome of ventilator-associated pneumonia. J Crit Care 21:56–65CrossRefPubMedGoogle Scholar
  4. 4.
    Parker CM, Kutsogiannis J, Muscedere J et al (2008) Ventilator-associated pneumonia caused by multidrug-resistant organisms or Pseudomonas aeruginosa: prevalence, incidence, risk factors, and outcomes. J Crit Care 23:18–26CrossRefPubMedGoogle Scholar
  5. 5.
    Rello J, Jubert P, Vallés J et al (1996) Evaluation of outcome for intubated patients with pneumonia due to Pseudomonas aeruginosa. Clin Infect Dis 23:973–978CrossRefPubMedGoogle Scholar
  6. 6.
    Aloush V, Navon-Venezia S, Seigman-Igra Y et al (2006) Multidrug-resistant Pseudomonas aeruginosa: risk factors and clinical impact. Antimicrob Agents Chemother 50:43–48CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Kollef MH, Chastre J, Fagon JY et al (2014) Global prospective epidemiologic and surveillance study of ventilator-associated pneumonia due to Pseudomonas aeruginosa. Crit Care Med 42:2178–2187CrossRefPubMedGoogle Scholar
  8. 8.
    Micek ST, Wunderink RG, Kollef MH et al (2015) An international multicenter retrospective study of Pseudomonas aeruginosa nosocomial pneumonia: impact of multidrug resistance. Crit Care 19:219CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Kaminski C, Timsit JF, Dubois Y et al (2011) Impact of ureido/carboxypenicillin resistance on the prognosis of ventilator-associated pneumonia due to Pseudomonas aeruginosa. Crit Care 15:R112CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Borgatta B, Lagunes L, Imbiscuso AT et al (2017) Infections in intensive care unit adult patients harboring multidrug-resistant Pseudomonas aeruginosa: implications for prevention and therapy. Eur J Clin Microbiol Infect Dis. doi: 10.1007/s10096-016-2894-3
  11. 11.
    D’Hoore W, Sicotte C, Tilquin C (1993) Risk adjustment in outcome assessment: the Charlson comorbidity index. Methods Inf Med 32:382–387PubMedGoogle Scholar
  12. 12.
    Knaus WA, Draper EA, Wagner DP et al (1985) APACHE II: a severity of disease classification system. Crit Care Med 13:818–829CrossRefPubMedGoogle Scholar
  13. 13.
    Vincent JL, de Mendonça A, Cantraine F et al (1998) Use of the SOFA score to assess the incidence of organ dysfunction/failure in intensive care units: results of a multicenter, prospective study. Working group on “sepsis-related problems” of the European Society of Intensive Care Medicine. Crit Care Med 26:1793–1800CrossRefPubMedGoogle Scholar
  14. 14.
    Lisboa T, Diaz E, Sa-Borges M et al (2008) The ventilator-associated pneumonia PIRO score: a tool for predicting ICU mortality and health-care resources use in ventilator-associated pneumonia. Chest 134:1208–1216CrossRefPubMedGoogle Scholar
  15. 15.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST) Breakpoint tables for interpretation of MICs and zone diameters, versions 1.3 and 2.0. Available online at: Last accessed 20th June 2016
  16. 16.
    Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281CrossRefPubMedGoogle Scholar
  17. 17.
    Paul M, Shani V, Muchtar E et al (2010) Systematic review and meta-analysis of the efficacy of appropriate empiric antibiotic therapy for sepsis. Antimicrob Agents Chemother 54:4851–4863CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    American Thoracic Society; Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416CrossRefGoogle Scholar
  19. 19.
    Craven DE, Hjalmarson KI (2010) Ventilator-associated tracheobronchitis and pneumonia: thinking outside the box. Clin Infect Dis 51:S59–S66CrossRefPubMedGoogle Scholar
  20. 20.
    ARDS Definition Task Force, Ranieri VM, Rubenfeld GD et al (2012) Acute respiratory distress syndrome: the Berlin Definition. JAMA 307:2526–2533Google Scholar
  21. 21.
    Kidney International Supplements (2012) KDIGO Clinical Practice Guideline for Acute Kidney Injury. Available online at: Last accessed 14th June 2016
  22. 22.
    Hauck C, Cober E, Richter SS et al (2016) Spectrum of excess mortality due to carbapenem-resistant Klebsiella pneumoniae infections. Clin Microbiol Infect 22:513–519CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Martin-Loeches I, Povoa P, Rodríguez A et al (2015) Incidence and prognosis of ventilator-associated tracheobronchitis (TAVeM): a multicentre, prospective, observational study. Lancet Respir Med 3:859–868CrossRefPubMedGoogle Scholar
  24. 24.
    Iregui M, Ward S, Sherman G et al (2002) Clinical importance of delays in the initiation of appropriate antibiotic treatment for ventilator-associated pneumonia. Chest 122:262–268CrossRefPubMedGoogle Scholar
  25. 25.
    Garnacho-Montero J, Sa-Borges M, Sole-Violan J et al (2007) Optimal management therapy for Pseudomonas aeruginosa ventilator-associated pneumonia: an observational, multicenter study comparing monotherapy with combination antibiotic therapy. Cit Care Med 35:1888–1895CrossRefGoogle Scholar
  26. 26.
    Munita JM, Aitken SL, Miller WR et al (2017) Multicenter evaluation of ceftolozane/tazobactam for serious infections caused by carbapenem-resistant Pseudomonas aeruginosa. Clin Infect Dis. doi: 10.1093/cid/cix014
  27. 27.
    Judd WR, Ratliff PD, Hickson RP et al (2016) Clinical and economic impact of meropenem resistance in Pseudomonas aeruginosa-infected patients. Am J Infect Control 44:1275–1279CrossRefPubMedGoogle Scholar
  28. 28.
    Kalil AC, Metersky ML, Klompas M et al (2016) Management of adults with hospital-acquired and ventilator-associated pneumonia: 2016 clinical practice guidelines by the Infectious Diseases Society of America and the American Thoracic Society. Clin Infect Dis 63:e61–e111CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Fernández-Barat L, Ferrer M, De Rosa F et al (2017) Intensive care unit-acquired pneumonia due to Pseudomonas aeruginosa with and without multidrug resistance. J Infect 74:142–152CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • B. Borgatta
    • 1
    • 2
    • 3
    Email author
  • S. Gattarello
    • 2
  • C. A. Mazo
    • 1
    • 2
    • 3
  • A. T. Imbiscuso
    • 4
  • M. N. Larrosa
    • 5
  • M. Lujàn
    • 6
  • J. Rello
    • 2
    • 3
    • 7
  1. 1.Critical Care DepartmentVall d’Hebron University HospitalBarcelonaSpain
  2. 2.CRIPS, Vall d’Hebron Institute of Research (VHIR)BarcelonaSpain
  3. 3.Universitat Autònoma de BarcelonaBarcelonaSpain
  4. 4.Anesthesiology Department, Institut HypnosHospital General de CatalunyaBarcelonaSpain
  5. 5.Microbiology DepartmentVall d’Hebron University HospitalBarcelonaSpain
  6. 6.Respiratory Medicine DepartmentFundació Sanitària Parc TaulíSabadellSpain
  7. 7.CIBERESMadridSpain

Personalised recommendations