Skip to main content

Advertisement

Log in

Antimicrobial effects of Manuka honey on in vitro biofilm formation by Clostridium difficile

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Clostridium difficile is the cause of the nosocomial C. difficile infection (CDI). The conventional antibiotics used in CDI therapy are often unsuccessful, and recurrent infections may occur. Biofilm formation by C. difficile is associated with chronic or recurrent infections; biofilms may contribute to virulence and impaired antimicrobial efficacy. Manuka honey, derived from the Manuka tree (Leptospermum scoparium), is known to exhibit antimicrobial properties that are associated with its significant content of methylglyoxal, a natural antibiotic. The aim of the present study was to determine the antimicrobial effect of Manuka honey on clinical C. difficile strains belonging to four prominent polymerase chain reaction (PCR) ribotypes (RTs) (RT017, RT023, RT027 and RT046) and on their biofilm formation in vitro. Minimal inhibitory and bactericidal concentrations (MICs and MBCs, respectively) were determined using the broth dilution method. The biomass of the biofilm and the clearance of C. difficile biofilms by Manuka honey were determined using the crystal violet staining method. The MIC and MBC of Manuka honey for C. difficile strains were equal at 6.25% (v/v). PCR RT027 strains produced more biofilm in vitro than the other examined strains. Manuka honey effectively inhibited biofilm formation by C. difficile strains of different PCR RTs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rupnik M, Wilcox MH, Gerding DN (2009) Clostridium difficile infection: new developments in epidemiology and pathogenesis. Nat Rev Microbiol 7:526–536. doi:10.1038/nrmicro2164

    Article  CAS  PubMed  Google Scholar 

  2. McFarland LV, Surawicz CM, Stamm WE (1990) Risk factors for Clostridium difficile carriage and C. difficile-associated diarrhea in a cohort of hospitalized patients. J Infect Dis 162:678–684

    Article  CAS  PubMed  Google Scholar 

  3. Davies KA, Ashwin H, Longshaw CM, Burns DA, Davis GL, Wilcox MH; EUCLID study group (2016) Diversity of Clostridium difficile PCR ribotypes in Europe: results from the European, multicentre, prospective, biannual, point-prevalence study of Clostridium difficile infection in hospitalised patients with diarrhoea (EUCLID), 2012 and 2013. Euro Surveill 21(29). doi:10.2807/1560-7917.ES.2016.21.29.30294

  4. Pituch H, Obuch-Woszczatyński P, Lachowicz D, Wultańska D, Karpiński P, Młynarczyk G, van Dorp SM, Kuijper EJ; Polish Clostridium difficile Study Group (2015) Hospital-based Clostridium difficile infection surveillance reveals high proportions of PCR ribotypes 027 and 176 in different areas of Poland, 2011 to 2013. Euro Surveill 20(38). doi: 10.2807/1560-7917.ES.2015.20.38.30025

  5. Bartlett JG (2006) Narrative review: the new epidemic of Clostridium difficile-associated enteric disease. Ann Intern Med 145:758–764

    Article  PubMed  Google Scholar 

  6. Vedantam G, Clark A, Chu M, McQuade R, Mallozzi M, Viswanathan VK (2012) Clostridium difficile infection: toxins and non-toxin virulence factors, and their contributions to disease establishment and host response. Gut Microbes 3:121–134. doi:10.4161/gmic.19399

    Article  PubMed  PubMed Central  Google Scholar 

  7. Tasteyre A, Barc MC, Karjalainen T, Dodson P, Hyde S, Bourlioux P, Borriello P (2000) A Clostridium difficile gene encoding flagellin. Microbiology 146:957–966

    Article  CAS  PubMed  Google Scholar 

  8. Chapetón Montes D, Candela T, Collignon A, Janoir C (2011) Localization of the Clostridium difficile cysteine protease Cwp84 and insights into its maturation process. J Bacteriol 193:5314–5321. doi:10.1128/JB.00326-11

    Article  Google Scholar 

  9. Ðapa T, Leuzzi R, Ng YK, Baban ST, Adamo R, Kuehne SA, Scarselli M, Minton NP, Serruto D, Unnikrishnan M (2013) Multiple factors modulate biofilm formation by the anaerobic pathogen Clostridium difficile. J Bacteriol 195:545–555. doi:10.1128/JB.01980-12

    Article  PubMed  PubMed Central  Google Scholar 

  10. Malone M, Bjarnsholt T, McBain AJ, James GA, Stoodley P, Leaper D, Tachi M, Schultz G, Swanson T, Wolcott RD (2017) The prevalence of biofilms in chronic wounds: a systematic review and meta-analysis of published data. J Wound Care 26:20–25. doi:10.12968/jowc.2017.26.1.20

    Article  CAS  PubMed  Google Scholar 

  11. Donlan RM (2001) Biofilms and device-associated infections. Emerg Infect Dis 7:277–281

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Crowther GS, Chilton CH, Todhunter SL, Nicholson S, Freeman J, Baines SD, Wilcox MH (2014) Comparison of planktonic and biofilm-associated communities of Clostridium difficile and indigenous gut microbiota in a triple-stage chemostat gut model. J Antimicrob Chemother 69:2137–2147. doi:10.1093/jac/dku116

    Article  CAS  PubMed  Google Scholar 

  13. Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9:34–39

    Article  CAS  PubMed  Google Scholar 

  14. Mathur H, Rea MC, Cotter PD, Hill C, Ross RP (2016) The efficacy of thuricin CD, tigecycline, vancomycin, teicoplanin, rifampicin and nitazoxanide, independently and in paired combinations against Clostridium difficile biofilms and planktonic cells. Gut Pathog 8:20. doi:10.1186/s13099-016-0102-8

    Article  PubMed  PubMed Central  Google Scholar 

  15. Hammond EN, Donkor ES, Brown CA (2014) Biofilm formation of Clostridium difficile and susceptibility to Manuka honey. BMC Complement Altern Med 14:329. doi:10.1186/1472-6882-14-329

    Article  PubMed  PubMed Central  Google Scholar 

  16. Stubbs SLJ, Brazier JS, O’Neill GL, Duerden BI (1999) PCR targeted to the 16S–23S rRNA gene intergenic spacer region of Clostridium difficile and construction of a library consisting of 116 different PCR ribotypes. J Clin Microbiol 37:461–463

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Stepanovic S, Vukovic D, Dakic I, Savic B, Svabic-Vlahovic M (2000) A modified microtiter-plate test for quantification of staphylococcal biofilm formation. J Microbiol Methods 40:175–179

    Article  CAS  PubMed  Google Scholar 

  18. Maddocks SE, Lopez MS, Rowlands RS, Cooper RA (2012) Manuka honey inhibits the development of Streptococcus pyogenes biofilms and causes reduced expression of two fibronectin binding proteins. Microbiology 158:781–790. doi:10.1099/mic.0.053959-0

    Article  CAS  PubMed  Google Scholar 

  19. Anthimidou E, Mossialos D (2013) Antibacterial activity of Greek and Cypriot honeys against Staphylococcus aureus and Pseudomonas aeruginosa in comparison to manuka honey. J Med Food 16:42–47. doi:10.1089/jmf.2012.0042

    Article  PubMed  Google Scholar 

  20. Cooper RA, Halas E, Molan PC (2002) The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. J Burn Care Rehabil 23:366–370

    Article  CAS  PubMed  Google Scholar 

  21. Hammond EN, Donkor ES (2013) Antibacterial effect of Manuka honey on Clostridium difficile. BMC Res Notes 6:188. doi:10.1186/1756-0500-6-188

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank all the microbiologists who provided isolates of C. difficile to the Anaerobe Laboratory (AL), Department of Medical Microbiology, Medical University of Warsaw.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Pituch.

Ethics declarations

Isolates were collected as part of routine hospitals surveillance. Ethical approval and informed consent were not required.

Funding

This research received no specific grant.

Conflict of interest

None to declare except that Alex van Belkum is an employee of bioMérieux Inc.

Additional information

Data availability: The data have been deposited in the Figshare Digital Repository. doi:10.6084/m9.figshare.4781224.v3

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piotrowski, M., Karpiński, P., Pituch, H. et al. Antimicrobial effects of Manuka honey on in vitro biofilm formation by Clostridium difficile . Eur J Clin Microbiol Infect Dis 36, 1661–1664 (2017). https://doi.org/10.1007/s10096-017-2980-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-017-2980-1

Keywords

Navigation