Skip to main content
Log in

Uncommonly isolated clinical Pseudomonas: identification and phylogenetic assignation

  • Original Article
  • Published:
European Journal of Clinical Microbiology & Infectious Diseases Aims and scope Submit manuscript

Abstract

Fifty-two Pseudomonas strains that were difficult to identify at the species level in the phenotypic routine characterizations employed by clinical microbiology laboratories were selected for genotypic-based analysis. Species level identifications were done initially by partial sequencing of the DNA dependent RNA polymerase sub-unit D gene (rpoD). Two other gene sequences, for the small sub-unit ribosonal RNA (16S rRNA) and for DNA gyrase sub-unit B (gyrB) were added in a multilocus sequence analysis (MLSA) study to confirm the species identifications. These sequences were analyzed with a collection of reference sequences from the type strains of 161 Pseudomonas species within an in-house multi-locus sequence analysis database. Whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) analyses of these strains complemented the DNA sequenced-based phylogenetic analyses and were observed to be in accordance with the results of the sequence data. Twenty-three out of 52 strains were assigned to 12 recognized species not commonly detected in clinical specimens and 29 (56 %) were considered representatives of at least ten putative new species. Most strains were distributed within the P. fluorescens and P. aeruginosa lineages. The value of rpoD sequences in species-level identifications for Pseudomonas is emphasized. The correct species identifications of clinical strains is essential for establishing the intrinsic antibiotic resistance patterns and improved treatment plans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Sader HS, Jones RN (2005) Antimicrobial susceptibility of uncommonly isolated non-enteric Gram-negative bacilli. Int J Antimicrob Agents 25(2):95–109. doi:10.1016/j.ijantimicag.2004.10.002

    Article  CAS  PubMed  Google Scholar 

  2. Kiska DL, Gilligan PH (2003) Pseudomonas. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH (eds) Manual of clinical microbiology, volume 1, eighth edition. American Society for Microbiology, Washington, DC, pp 719–728

  3. Mulet M, Lalucat J, García-Valdés E (2010) DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12(6):1513–1530. doi:10.1111/j.1462-2920.2010.02181.x

    CAS  PubMed  Google Scholar 

  4. Gomila M, Peña A, Mulet M, Lalucat J, García-Valdés E (2015) Phylogenomics and systematics in Pseudomonas. Front Microbiol 6:214. doi:10.3389/fmicb.2015.00214

    Article  PubMed  PubMed Central  Google Scholar 

  5. Mulet M, Gomila M, Scotta C, Sánchez D, Lalucat J, García-Valdés E (2012) Concordance between whole-cell matrix-assisted laser-desorption/ionization time-of-flight mass spectrometry and multilocus sequence analysis approaches in species discrimination within the genus Pseudomonas. Syst Appl Microbiol 35(7):455–464. doi:10.1016/j.syapm.2012.08.007

    Article  CAS  PubMed  Google Scholar 

  6. Scotta C, Gomila M, Mulet M, Lalucat J, García-Valdés E (2013) Whole-cell MALDI-TOF mass spectrometry and multilocus sequence analysis in the discrimination of Pseudomonas stutzeri populations: three novel genomovars. Microb Ecol 66(3):522–532. doi:10.1007/s00248-013-0246-8

    Article  CAS  PubMed  Google Scholar 

  7. Wilson K (1987) Preparation of genomic DNA from bacteria. In: Ausubel FM, Brent R, Kingston RE, Moore DD, Seidman JG, Smith JA, Struhl K (eds) Current protocols in molecular biology. Wiley, New York, pp 241–242

    Google Scholar 

  8. Mulet M, Gomila M, Gruffaz C, Meyer JM, Palleroni NJ, Lalucat J, García-Valdés E (2008) Phylogenetic analysis and siderotyping as useful tools in the taxonomy of Pseudomonas stutzeri: description of a novel genomovar. Int J Syst Evol Microbiol 58:2309–2315. doi:10.1099/ijs.0.65797-0

    Article  CAS  PubMed  Google Scholar 

  9. Mulet M, Bennasar A, Lalucat J, García-Valdés E (2009) An rpoD based PCR procedure for the identification of Pseudomonas species and for their detection in environmental samples. Mol Cell Probes 23:140–147. doi:10.1016/j.mcp.2009.02.001

    Article  CAS  PubMed  Google Scholar 

  10. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Sánchez D, Mulet M, Rodríguez AC, David Z, Lalucat J, García-Valdés E (2014) Pseudomonas aestusnigri sp. nov., isolated from crude oil-contaminated intertidal sand samples after the Prestige oil spill. Syst Appl Microbiol 37(2):89–94. doi:10.1016/j.syapm.2013.09.004

    Article  PubMed  Google Scholar 

  12. Scotta C, Mulet M, Sánchez D, Gomila M, Ramírez A, Bennasar A, García-Valdés E, Holmes B, Lalucat J (2012) Identification and genomovar assignation of clinical strains of Pseudomonas stutzeri. Eur J Clin Microbiol Infect Dis 31(9):2133–2139. doi:10.1007/s10096-012-1547-4

    Article  CAS  PubMed  Google Scholar 

  13. Sánchez D, Matthijs S, Gomila M, Tricot C, Mulet M, García-Valdés E, Lalucat J (2014) rpoD gene pyrosequencing for the assessment of Pseudomonas diversity in a water sample from the Woluwe River. Appl Environ Microbiol 80(15):4738–4744. doi:10.1128/AEM.00412-14

    Article  PubMed  PubMed Central  Google Scholar 

  14. Dabboussi F, Hamze M, Singer E, Geoffroy V, Meyer JM, Izard D (2002) Pseudomonas mosselii sp. nov., a novel species isolated from clinical specimens. Int J Syst Evol Microbiol 52:363–376. doi:10.1099/00207713-52-2-363

    Article  CAS  PubMed  Google Scholar 

  15. Kodama K, Kimura N, Komagata K (1985) Two new species of Pseudomonas: P. oryzihabitans isolated from rice paddy and clinical specimens and P. luteola isolated from clinical specimens. Int J Syst Bacteriol 35:467–474

    Article  CAS  Google Scholar 

  16. Hauser E, Kämpfer P, Busse HJ (2004) Pseudomonas psychrotolerans sp. nov. Int J Syst Evol Microbiol 54:1633–1637. doi:10.1099/ijs.0.03024-0

    Article  CAS  PubMed  Google Scholar 

  17. Tvrzová L, Schumann P, Spröer C, Sedláček I, Páčová Z, Šedo O, Zdráhal Z, Steffen M, Lang E (2006) Pseudomonas moraviensis sp. nov. and Pseudomonas vranovensis sp. nov., soil bacteria isolated on nitroaromatic compounds, and emended description of Pseudomonas asplenii. Int J Syst Evol Microbiol 56:2657–2663. doi:10.1099/ijs.0.63988-0

    Article  PubMed  Google Scholar 

  18. Pascual J, García-López M, Carmona C, Da S, Sousa T, De Pedro N, Cautain B, Martín J, Vicente F, Reyes F, Bills GF, Genilloud O (2014) Pseudomonas soli sp. nov., a novel producer of xantholysin congeners. Syst Appl Microbiol 37:412–416. doi:10.1016/j.syapm.2014.07.003

    Article  CAS  PubMed  Google Scholar 

  19. Toro M, Ramírez-Bahena M-H, Cuesta MJ, Velázquez E, Peix A (2013) Pseudomonas guariconensis sp. nov., isolated from rhizospheric soil. Int J Syst Evol Microbiol 63:4413–4420. doi:10.1099/ijs.0.051193-0

    Article  CAS  PubMed  Google Scholar 

  20. Behrendt U, Ulrich A, Schumann P, Meyer JM, Spröer C (2007) Pseudomonas lurida sp. nov., a fluorescent species associated with the phyllosphere of grasses. Int J Syst Evol Microbiol 57:979–985. doi:10.1099/ijs.0.64793-0

    Article  CAS  PubMed  Google Scholar 

  21. Palleroni NJ (2008) The road to the taxonomy of Pseudomonas. In: Cornelis P (ed) Pseudomonas: genomics and molecular biology. CaisterAcademic, Norfolk, pp 1–18

    Google Scholar 

  22. Tao Y, Zhou Y, He X, Hu X, Li D (2014) Pseudomonas chengduensis sp. nov., isolated from landfill leachate. Int J Syst Evol Microbiol 64:95–100. doi:10.1099/ijs.0.050294-0

    Article  CAS  PubMed  Google Scholar 

  23. von Neubeck M, Huptas C, Glück C, Krewinkel M, Stoeckel M, Stressler T, Fischer L, Hinrichs J, Scherer S, Wenning M (2016) Pseudomonas helleri sp. nov. and Pseudomonas weihenstephanensis sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol 66(3):1163–1173. doi:10.1099/ijsem.0.000852

    Article  Google Scholar 

  24. Jun SR, Wassenaar TM, Nookaew I, Hauser L, Wanchai V, Land M, Timm CM, Lu TY, Schadt CW, Doktycz MJ, Pelletier DA, Ussery DW (2015) Diversity of pseudomonas genomes, including populus-associated isolates, as revealed by comparative genome analysis. Appl Environ Microbiol 82(1):375–383. doi:10.1128/AEM.02612-15

    Article  PubMed  PubMed Central  Google Scholar 

  25. Beiki F, Busquets A, Gomila M, Rahimian H, Lalucat J, García-Valdés E (2016) New Pseudomonas spp. are pathogenic to citrus. PLoS One 11(2):e0148796. doi:10.1371/journal.pone.0148796

    Article  PubMed  PubMed Central  Google Scholar 

  26. García-Valdés E, Lalucat J (2016) Pseudomonas molecular phylogeny and current taxonomy. In: Kahlon SR (ed) Pseudomonas: molecular and applied biology. Springer International Publishing, pp 1–23. doi: 10.1007/978-3-319-31198-2_1

  27. Von Graevenitz A, Weinstein J (1971) Pathogenic significance of Pseudomonas fluorescens and Pseudomonas putida. Yale J Biol Med 44(3):265–273

    Google Scholar 

Download references

Acknowledgments

E. Moore acknowledges the support to the CCUG by the Department of Clinical Microbiology, Sahlgrenska University Hospital. A. Ramírez acknowledges the support of the Servicio de Microbiología, Hospital Universitario Son Espases.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. García-Valdés.

Ethics declarations

Isolates were obtained as part of the routine activity of the Servicio de Microbiologia of the Hospital Universitario Son Espases (Spain) and of the Department of Infectious Disease, Institute of Biomedicine, Sahlgrenska Academy of the University of Gothenburg (Sweden) and were analyzed anonymously in a retrospective manner. Ethical approval and informed consent were, thus, not required.

Conflict of interest

The authors declare that they have no conflict of interest.

Funding

This work was supported by project CGL2015-70925-P from the Spanish Economy and Competitiveness Ministry (with FEDER cofunding). M. Gomila was supported by a postdoctoral contract from the Conselleria d’Educació, Cultura i Universitats del Govern de les Illes Balears and the European Social Fund. M. Gomila was the recipient of a José Castillejo stipendium for exchange with the Culture Collection University of Gothenburg (CCUG), Gothenburg, Sweden.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Bacterial strains included in the present study, their origins and the initial identifications as received. (DOCX 25 kb)

Table S2

GenBank accession numbers of sequences used in this study. Accession numbers indicated in bold are for sequences determined in this study. (DOCX 20 kb)

Fig. S1

Dendrogram of relatedness between the 52 clinical isolates and the type strains Pseudomonas available in the Bruker taxonomy database. The dendrogram was generated by MALDI BioTyper software (vs. 1.0; Bruker Daltonics). Distance values were relative and normalized to a maximal value of 1000. (GIF 335 kb)

High resolution image (TIF 25394 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mulet, M., Gomila, M., Ramírez, A. et al. Uncommonly isolated clinical Pseudomonas: identification and phylogenetic assignation. Eur J Clin Microbiol Infect Dis 36, 351–359 (2017). https://doi.org/10.1007/s10096-016-2808-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-016-2808-4

Keywords

Navigation