A review on host–pathogen interactions: classification and prediction

Review

Abstract

The research on host–pathogen interactions is an ever-emerging and evolving field. Every other day a new pathogen gets discovered, along with comes the challenge of its prevention and cure. As the intelligent human always vies for prevention, which is better than cure, understanding the mechanisms of host–pathogen interactions gets prior importance. There are many mechanisms involved from the pathogen as well as the host sides while an interaction happens. It is a vis-a-vis fight of the counter genes and proteins from both sides. Who wins depends on whether a host gets an infection or not. Moreover, a higher level of complexity arises when the pathogens evolve and become resistant to a host’s defense mechanisms. Such pathogens pose serious challenges for treatment. The entire human population is in danger of such long-lasting persistent infections. Some of these infections even increase the rate of mortality. Hence there is an immediate emergency to understand how the pathogens interact with their host for successful invasion. It may lead to discovery of appropriate preventive measures, and the development of rational therapeutic measures and medication against such infections and diseases. This review, a state-of-the-art updated scenario of host–pathogen interaction research, has been done by keeping in mind this urgency. It covers the biological and computational aspects of host–pathogen interactions, classification of the methods by which the pathogens interact with their hosts, different machine learning techniques for prediction of host–pathogen interactions, and future scopes of this research field.

Keywords

Host–pathogen interactions Pathogen informatics Machine learning In silico prediction Secretion systems Effector proteins 

References

  1. 1.
    Albersheim P, Anderson AJ (1971) Proteins from plant cell walls inhibit polygalacturonases secreted by plant pathogens. Proc Nat Acad Sci 68(8):1815–1819PubMedPubMedCentralCrossRefGoogle Scholar
  2. 2.
    Albersheim P, Valent BS (1974) Host–pathogen interactions VII. Plant pathogens secrete proteins which inhibit enzymes of the host capable of attacking the pathogen. Plant Physiol 53(5):684–687PubMedPubMedCentralCrossRefGoogle Scholar
  3. 3.
    Alderwick LJ, Dover LG, Seidel M, Gande R, Sahm H, Eggeling L, Besra GS (2006) Arabinan-deficient mutants of Corynebacterium glutamicum and the consequent flux in decaprenylmonophosphoryl-D-arabinose metabolism. Glycobiology 16(11):1073–1081PubMedCrossRefGoogle Scholar
  4. 4.
    Arnold R, Brandmaier S, Kleine F, Tischler P, Heinz E, Behrens S, Niinikoski A, Mewes HW, Horn M, Rattei T (2009) Sequence-based prediction of type III secreted proteins. PLoS Pathogen 5 (4):e1000,376CrossRefGoogle Scholar
  5. 5.
    Aurrecoechea C, Barreto A, Brestelli J, Brunk BP, Cade S, Doherty R, Fischer S, Gajria B, Gao X, Gingle A et al (2013) EuPathDB: the eukaryotic pathogen database. Nucleic Acids Res 41 (D1):D684–D691PubMedCrossRefGoogle Scholar
  6. 6.
    Aurrecoechea C, Brestelli J, Brunk BP, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M et al (2010) EuPathDB: a portal to eukaryotic pathogen databases. Nucleic Acids Res 38(suppl 1):D415–D419PubMedCrossRefGoogle Scholar
  7. 7.
    Balakrishnan S, Tastan O, Carbonell J, Klein-Seetharaman J (2009) Alternative paths in HIV-1 targeted human signal transduction pathways. BMC Genom 10(3):1Google Scholar
  8. 8.
    Bertoletti A, Maini MK, Ferrari C (2010) The host–pathogen interaction during HBV infection: immunological controversies. Antiv Therapy 15(3):15CrossRefGoogle Scholar
  9. 9.
    Bleves S, Dunger I, Walter MC, Frangoulidis D, Kastenmüller G, Voulhoux R, Ruepp A (2014) HoPaCI-DB: host-Pseudomonas and Coxiella interaction database. Nucleic Acids Res 42(D1):D671–D676PubMedCrossRefGoogle Scholar
  10. 10.
    Bock JR, Gough DA (2001) Predicting protein–protein interactions from primary structure. Bioinformatics 17(5):455–460PubMedCrossRefGoogle Scholar
  11. 11.
    Botella H, Stadthagen G, Lugo-Villarino G, de Chastellier C, Neyrolles O (2012) Metallobiology of host–pathogen interactions: an intoxicating new insight. Trends Microbiol 20(3):106–112PubMedCrossRefGoogle Scholar
  12. 12.
    Brass AL, Dykxhoorn DM, Benita Y, Yan N, Engelman A, Xavier RJ, Lieberman J, Elledge SJ (2008) Identification of host proteins required for HIV infection through a functional genomic screen. Science 319(5865):921–926PubMedCrossRefGoogle Scholar
  13. 13.
    Breitenbach JM, Hausinger RP (1988) Proteus mirabilis urease. Partial purification and inhibition by boric acid and boronic acids. Biochem J 250(3):917–920PubMedPubMedCentralCrossRefGoogle Scholar
  14. 14.
    Bumann D (2015) Heterogeneous host–pathogen encounters: act locally, think globally. Cell Host Microbe 17(1):13–19PubMedCrossRefGoogle Scholar
  15. 15.
    Burts ML, Williams WA, DeBord K, Missiakas DM (2005) EsxA and EsxB are secreted by an ESAT-6-like system that is required for the pathogenesis of Staphylococcus aureus infections. Proc Nat Acad Sci USA 102(4):1169–1174PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Calderwood MA, Venkatesan K, Xing L, Chase MR, Vazquez A, Holthaus AM, Ewence AE, Li N, Hirozane-Kishikawa T, Hill DE et al (2007) Epstein–Barr virus and virus human protein interaction maps. Proc Nat Acad Sci 104(18):7606– 7611PubMedPubMedCentralCrossRefGoogle Scholar
  17. 17.
    Casadevall A, Pirofski La (1999) Host–pathogen interactions: redefining the basic concepts of virulence and pathogenicity. Infec Immun 67(8):3703–3713Google Scholar
  18. 18.
    Chatr-aryamontri A, Ceol A, Peluso D, Nardozza A, Panni S, Sacco F, Tinti M, Smolyar A, Castagnoli L, Vidal M et al (2009) VirusMINT: a viral protein interaction database. Nucleic Acids Res 37 (suppl 1):D669–D673PubMedCrossRefGoogle Scholar
  19. 19.
    Chaussabel D, Semnani RT, McDowell MA, Sacks D, Sher A, Nutman TB (2003) Unique gene expression profiles of human macrophages and dendritic cells to phylogenetically distinct parasites. Blood 102 (2):672–681PubMedCrossRefGoogle Scholar
  20. 20.
    Chen L, Xiong Z, Sun L, Yang J, Jin Q (2011) VFDB 2012 update: toward the genetic diversity and molecular evolution of bacterial virulence factors. Nucleic Acids Res:gkr989Google Scholar
  21. 21.
    Chen L, Yang J, Yu J, Yao Z, Sun L, Shen Y, Jin Q (2005) VFDB: a reference database for bacterial virulence factors. Nucleic Acids Res 33(suppl 1):D325–D328PubMedGoogle Scholar
  22. 22.
    Chertova E, Chertov O, Coren LV, Roser JD, Trubey CM, Bess JW, Sowder RC, Barsov E, Hood BL, Fisher RJ et al (2006) Proteomic and biochemical analysis of purified human immunodeficiency virus type 1 produced from infected monocyte-derived macrophages. J Virol 80(18):9039– 9052PubMedPubMedCentralCrossRefGoogle Scholar
  23. 23.
    Clemens DL, Lee BY, Horwitz MA (1995) Purification, characterization, and genetic analysis of Mycobacterium tuberculosis urease, a potentially critical determinant of host–pathogen interaction. J Bacteriol 177 (19):5644–5652PubMedPubMedCentralGoogle Scholar
  24. 24.
    Cole S, Brosch R, Parkhill J, Garnier T, Churcher C, Harris D, Gordon S, Eiglmeier K, Gas S, Barry Cr et al (1998) Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393(6685):537–544PubMedCrossRefGoogle Scholar
  25. 25.
    Collins SR, Kemmeren P, Zhao XC, Greenblatt JF, Spencer F, Holstege FC, Weissman JS, Krogan NJ (2007) Toward a comprehensive atlas of the physical interactome of Saccharomyces cerevisiae. Molec Cell Proteom 6(3):439–450CrossRefGoogle Scholar
  26. 26.
    Converse SE, Cox JS (2005) A protein secretion pathway critical for Mycobacterium tuberculosis virulence is conserved and functional in Mycobacterium smegmatis. J Bacteriol 187(4):1238–1245PubMedPubMedCentralCrossRefGoogle Scholar
  27. 27.
    Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in Gram-negative bacteria: structural and mechanistic insights. Nat Rev Microbiol 13 (6):343–359PubMedCrossRefGoogle Scholar
  28. 28.
    Davis FP, Barkan DT, Eswar N, McKerrow JH, Sali A (2007) Host–pathogen protein interactions predicted by comparative modeling. Protein Sci 16(12):2585–2596PubMedPubMedCentralCrossRefGoogle Scholar
  29. 29.
    Delogu G, Brennan MJ (2001) Comparative immune response to PE and PE_PGRS antigens of Mycobacterium tuberculosis. Infec Immun 69(9):5606–5611CrossRefGoogle Scholar
  30. 30.
    d’Enfert C, Ryter A, Pugsley A (1987) Cloning and expression in Escherichia coli of the Klebsiella pneumoniae genes for production, surface localization and secretion of the lipoprotein pullulanase. EMBO J 6 (11):3531PubMedPubMedCentralGoogle Scholar
  31. 31.
    Dickson J, Syamananda R, Flangas A (1959) The genetic approach to the physiology of parasitism of the corn rust pathogens. Amer J Botany:614–620Google Scholar
  32. 32.
    Doherty CP (2007) Host–pathogen interactions: the role of iron. J Nutrit 137(5):1341–1344PubMedGoogle Scholar
  33. 33.
    Doolittle JM, Gomez SM (2010) Structural similarity-based predictions of protein interactions between HIV-1 and Homo sapiens. Virol J 7(1):82PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Doolittle JM, Gomez SM (2011) Mapping protein interactions between Dengue virus and its human and insect hosts. PLoS Neglect Tropical Dis 5(2):e954CrossRefGoogle Scholar
  35. 35.
    Driscoll T, Dyer MD, Murali T, Sobral BW (2009) PIG-the pathogen interaction gateway. Nucleic Acids Res 37(suppl 1):D647–D650PubMedCrossRefGoogle Scholar
  36. 36.
    Durmu? S, Cakir T, Özgür A, Guthke R (2015) A review on computational systems biology of pathogen–host interactions. Frontiers Microbiol 6Google Scholar
  37. 37.
    Dyer MD, Murali T, Sobral BW (2007) Computational prediction of host–pathogen protein–protein interactions. Bioinformatics 23(13):i159–i166PubMedCrossRefGoogle Scholar
  38. 38.
    Dyer MD, Murali T, Sobral BW (2008) The landscape of human proteins interacting with viruses and other pathogens. PLoS Pathogen 4(2):e32CrossRefGoogle Scholar
  39. 39.
    Dyer MD, Neff C, Dufford M, Rivera CG, Shattuck D, Bassaganya-Riera J, Murali T, Sobral BW (2010) The human-bacterial pathogen protein interaction networks of Bacillus anthracis, Francisella tularensis, and Yersinia pestis. PloS One 5(8):e12,089CrossRefGoogle Scholar
  40. 40.
    Edwards H, Allen P et al (1970) A fine-structure study of the primary infection process during infection of barley by Erysiphe graminis f. sp. hordei. Phytopathology 60(10):1504–1509CrossRefGoogle Scholar
  41. 41.
    Emmenegger E, Kentop E, Thompson T, Pittam S, Ryan A, Keon D, Carlino J, Ranson J, Life R, Troyer R et al (2011) Development of an aquatic pathogen database (Aquapathogen X) and its utilization in tracking emerging fish virus pathogens in North America. J Fish Dis 34(8):579–587PubMedCrossRefGoogle Scholar
  42. 42.
    English PD, Albersheim P (1969) Host–pathogen interactions: I. A correlation between a-galactosidase production and virulence. Plant Physiol 44(2):217–224PubMedPubMedCentralCrossRefGoogle Scholar
  43. 43.
    Evans P, Dampier W, Ungar L, Tozeren A (2009) Prediction of HIV-1 virus-host protein interactions using virus and host sequence motifs. BMC Med Genom 2(1):1CrossRefGoogle Scholar
  44. 44.
    Fahey ME, Bennett MJ, Mahon C, Jäger S, Pache L, Kumar D, Shapiro A, Rao K, Chanda SK, Craik CS et al (2011) GPS-Prot: a web-based visualization platform for integrating host–pathogen interaction data. BMC Bioinform 12(1):298CrossRefGoogle Scholar
  45. 45.
    Fenhalls G, Stevens L, Moses L, Bezuidenhout J, Betts JC, van Helden P, Lukey PT, Duncan K (2002) In situ detection of Mycobacterium tuberculosis transcripts in human lung granulomas reveals differential gene expression in necrotic lesions. Infect Immun 70(11):6330–6338PubMedPubMedCentralCrossRefGoogle Scholar
  46. 46.
    Fisher ML, Anderson AJ, Albersheim P (1973) Host–pathogen interactions VI. A single plant protein efficiently inhibits endopolygalacturonases secreted by Colletotrichum lindemuthianum and Aspergillus niger. Plant Physiol 51(3):489–491PubMedPubMedCentralCrossRefGoogle Scholar
  47. 47.
    Galan JE, Curtiss R (1989) Cloning and molecular characterization of genes whose products allow Salmonella typhimurium to penetrate tissue culture cells. Proc Nat Acad Sci 86(16):6383–6387PubMedPubMedCentralCrossRefGoogle Scholar
  48. 48.
    Ghosh Z, Mallick B, Chakrabarti J (2009) Cellular versus viral microRNAs in host–virus interaction. Nucleic Acids Res 37(4):1035–1048PubMedCrossRefGoogle Scholar
  49. 49.
    Gómez-Díaz E, Jordà M, Peinado MA, Rivero A (2012) Epigenetics of host–pathogen interactions: the road ahead and the road behind. PLoS Pathogen 8(11):e1003,007CrossRefGoogle Scholar
  50. 50.
    Guérin I, de Chastellier C (2000) Pathogenic mycobacteria disrupt the macrophage actin filament network. Infect Immun 68(5):2655–2662PubMedPubMedCentralCrossRefGoogle Scholar
  51. 51.
    Guirimand T, Delmotte S, Navratil V (2015) VirHostNet 2.0: surfing on the web of virus/host molecular interactions data. Nucleic Acids Res 43(D1):D583–D587PubMedCrossRefGoogle Scholar
  52. 52.
    Gutierrez MG, Master SS, Singh SB, Taylor GA, Colombo MI, Deretic V (2004) Autophagy is a defense mechanism inhibiting BCG and Mycobacterium tuberculosis survival in infected macrophages. Cell 119 (6):753–766PubMedCrossRefGoogle Scholar
  53. 53.
    Meijer HA, Spaink PH (2011) Host–pathogen interactions made transparent with the zebrafish model. Current Drug Targets 12(7):1000–1017PubMedPubMedCentralCrossRefGoogle Scholar
  54. 54.
    Hatzios SK, Abel S, Martell J, Hubbard T, Sasabe J, Munera D, Clark L, Bachovchin DA, Qadri F, Ryan ET et al (2016) Chemoproteomic profiling of host and pathogen enzymes active in cholera. Nat Chem Biol 12(4):268–274PubMedPubMedCentralCrossRefGoogle Scholar
  55. 55.
    Hess S, Rambukkana A (2015) Bacterial-induced cell reprogramming to stem cell-like cells: new premise in host–pathogen interactions. Current Opinion Microbiol 23:179–188CrossRefGoogle Scholar
  56. 56.
    Hess W (1969) Ultrastructure of onion roots infected with Pyrenochaeta terrestris, a fungus parasite. Amer J Botany:832–845Google Scholar
  57. 57.
    Irazoqui JE, Ng A, Xavier RJ, Ausubel FM (2008) Role for ß-catenin and HOX transcription factors in Caenorhabditis elegans and mammalian host epithelial–pathogen interactions. Proc Nat Acad Sci 105(45):17,469–17,474CrossRefGoogle Scholar
  58. 58.
    de Jong HK, Parry CM, van der Poll T, Wiersinga WJ (2012) Host–pathogen interaction in invasive salmonellosis. PLOS Pathogen 8(10):e1002,933CrossRefGoogle Scholar
  59. 59.
    Kearney B, Ronald PC, Dahlbeck D, Staskawicz BJ (1988) Molecular basis for evasion of plant host defence in bacterial spot disease of pepper. Nature 332(6164):541–543CrossRefGoogle Scholar
  60. 60.
    Kierszenbaum F, Wirth JJ, McCANN PP, Sjoerdsma A (1987) Impairment of macrophage function by inhibitors of ornithine decarboxylase activity. Infect Immun 55(10):2461–2464PubMedPubMedCentralGoogle Scholar
  61. 61.
    König R, Stertz S, Zhou Y, Inoue A, Hoffmann HH, Bhattacharyya S, Alamares JG, Tscherne DM, Ortigoza MB, Liang Y et al (2010) Human host factors required for influenza virus replication. Nature 463(7282):813–817PubMedPubMedCentralCrossRefGoogle Scholar
  62. 62.
    König R, Zhou Y, Elleder D, Diamond TL, Bonamy GM, Irelan JT, Chiang Cy, Tu BP, De Jesus PD, Lilley CE et al (2008) Global analysis of host–pathogen interactions that regulate early-stage HIV-1 replication. Cell 135(1):49–60PubMedPubMedCentralCrossRefGoogle Scholar
  63. 63.
    Krachler AM, Ham H, Orth K (2011) Outer membrane adhesion factor multivalent adhesion molecule 7 initiates host cell binding during infection by Gram-negative pathogens. Proc Nat Acad Sci 108(28):11,614–11,619CrossRefGoogle Scholar
  64. 64.
    Krishnadev O, Srinivasan N (2008) A data integration approach to predict host–pathogen protein–protein interactions: application to recognize protein interactions between human and a malarial parasite. Silico Biol 8(3, 4):235–250Google Scholar
  65. 65.
    Kshirsagar M, Carbonell J, Klein-Seetharaman J (2012) Techniques to cope with missing data in host–pathogen protein interaction prediction. Bioinformatics 28(18):i466–i472PubMedPubMedCentralCrossRefGoogle Scholar
  66. 66.
    Kshirsagar M, Carbonell J, Klein-Seetharaman J (2013) Multitask learning for host–pathogen protein interactions. Bioinformatics 29(13):i217–i226PubMedPubMedCentralCrossRefGoogle Scholar
  67. 67.
    Kuehn MJ, Kesty NC (2005) Bacterial outer membrane vesicles and the host–pathogen interaction. Genes Develop 19(22):2645–2655PubMedCrossRefGoogle Scholar
  68. 68.
    Kuldau GA, De Vos G, Owen J, McCaffrey G, Zambryski P (1990) The virB operon of Agrobacterium tumefaciens pTiC58 encodes 11 open reading frames. Molecular Gen Genet MGG 221(2):256–266PubMedCrossRefGoogle Scholar
  69. 69.
    Kumar R, Nanduri B (2010) HPIDB-a unified resource for host–pathogen interactions. BMC Bioinform 11(6):1Google Scholar
  70. 70.
    Kurz CL, Ewbank JJ (2000) Caenorhabditis elegans for the study of host–pathogen interactions. Trends Microbiol 8(3):142–144PubMedCrossRefGoogle Scholar
  71. 71.
    Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, Butler R, Campbell KS, Christophides GK, Christley S, Dialynas E et al (2007) VectorBase: a home for invertebrate vectors of human pathogens. Nucleic Acids Resh 35(suppl 1):D503–D505CrossRefGoogle Scholar
  72. 72.
    Lawson D, Arensburger P, Atkinson P, Besansky NJ, Bruggner RV, Butler R, Campbell KS, Christophides GK, Christley S, Dialynas E et al (2009) VectorBase: a data resource for invertebrate vector genomics. Nucleic Acids Res 37(suppl 1):D583–D587PubMedCrossRefGoogle Scholar
  73. 73.
    Lecuit M, Dramsi S, Gottardi C, Fedor-Chaiken M, Gumbiner B, Cossart P (1999) A single amino acid in E-cadherin responsible for host specificity towards the human pathogen Listeria monocytogenes. EMBO J 18(14):3956–3963PubMedPubMedCentralCrossRefGoogle Scholar
  74. 74.
    Lee SA, Chan Ch, Tsai CH, Lai JM, Wang FS, Kao CY, Huang CYF (2008) Ortholog-based protein–protein interaction prediction and its application to inter-species interactions. BMC Bioinform 9(12):1Google Scholar
  75. 75.
    Lewthwaite JC, Coates AR, Tormay P, Singh M, Mascagni P, Poole S, Roberts M, Sharp L, Henderson B (2001) Mycobacterium tuberculosis chaperonin 60.1 is a more potent cytokine stimulator than chaperonin 60.2 (Hsp 65) and contains a CD14-binding domain. Infect Immun 69(12):7349– 7355PubMedPubMedCentralCrossRefGoogle Scholar
  76. 76.
    Low DHP, Frecer V, Le Saux A, Srinivasan GA, Ho B, Chen J, Ding JL (2010) Molecular interfaces of the galactose-binding protein Tectonin domains in host–pathogen interaction. J Biol Chem 285(13):9898–9907PubMedPubMedCentralCrossRefGoogle Scholar
  77. 77.
    Lui YLE, Tan TL, Timms P, Hafner LM, Tan KH, Tan EL (2014) Elucidating the host–pathogen interaction between human colorectal cells and invading Enterovirus 71 using transcriptomics profiling. FEBS Open Bio 4(1):426–431PubMedPubMedCentralCrossRefGoogle Scholar
  78. 78.
    Marriott HM, Mitchell TJ, Dockrell DH (2008) Pneumolysin: a double-edged sword during the host–pathogen interaction. Current Molec Med 8(6):497–509CrossRefGoogle Scholar
  79. 79.
    Matthews LR, Vaglio P, Reboul J, Ge H, Davis BP, Garrels J, Vincent S, Vidal M (2001) Identification of potential interaction networks using sequence-based searches for conserved protein–protein interactions or “interologs”. Genome Res 11(12):2120–2126PubMedPubMedCentralCrossRefGoogle Scholar
  80. 80.
    Mattoo S, Lee YM, Dixon JE (2007) Interactions of bacterial effector proteins with host proteins. Current Opinion Immunol 19(4):392–401CrossRefGoogle Scholar
  81. 81.
    McCarthy AJ, Lindsay JA (2010) Genetic variation in Staphylococcus aureus surface and immune evasion genes is lineage associated: implications for vaccine design and host–pathogen interactions. BMC Microbiol 10(1):1CrossRefGoogle Scholar
  82. 82.
    McGuffin LJ, Bryson K, Jones DT (2000) The PSIPRED protein structure prediction server. Bioinformatics 16(4):404–405PubMedCrossRefGoogle Scholar
  83. 83.
    Mech F, Thywißen A, Guthke R, Brakhage AA, Figge MT (2011) Automated image analysis of the host–pathogen interaction between phagocytes and Aspergillus fumigatus. PloS One 6(5):e19,591CrossRefGoogle Scholar
  84. 84.
    Mege JL (2016) Dendritic cell subtypes: a new way to study host–pathogen interaction. Virulence 7(1):5–6PubMedCrossRefGoogle Scholar
  85. 85.
    Megy K, Emrich SJ, Lawson D, Campbell D, Dialynas E, Hughes DS, Koscielny G, Louis C, MacCallum RM, Redmond SN et al (2012) VectorBase: improvements to a bioinformatics resource for invertebrate vector genomics. Nucleic Acids Res 40(D1):D729–D734PubMedCrossRefGoogle Scholar
  86. 86.
    Mishra AK, Driessen NN, Appelmelk BJ, Besra GS (2011) Lipoarabinomannan and related glycoconjugates: structure, biogenesis and role in Mycobacterium tuberculosis physiology and host–pathogen interaction. FEMS Microbiol Rev 35(6):1126–1157PubMedPubMedCentralCrossRefGoogle Scholar
  87. 87.
    Molle V, Kremer L (2010) Division and cell envelope regulation by Ser/Thr phosphorylation: Mycobacterium shows the way. Molecul Microbiol 75(5):1064–1077CrossRefGoogle Scholar
  88. 88.
    Mougous JD, Cuff ME, Raunser S, Shen A, Zhou M, Gifford CA, Goodman AL, Joachimiak G, Ordoñez CL, Lory S et al (2006) A virulence locus of Pseudomonas aeruginosa encodes a protein secretion apparatus. Science 312(5779):1526– 1530PubMedPubMedCentralCrossRefGoogle Scholar
  89. 89.
    Muir RE, Tan MW (2008) Virulence of Leucobacter chromiireducens subsp. solipictus to Caenorhabditis elegans: characterization of a novel host–pathogen interaction. Appl Environ Microbiol 74(13):4185–4198PubMedPubMedCentralCrossRefGoogle Scholar
  90. 90.
    Murray PJ, Young RA (1992) Stress and immunological recognition in host–pathogen interactions. J Bacteriol 174(13):4193PubMedPubMedCentralGoogle Scholar
  91. 91.
    Mylonakis E, Aballay A (2005) Worms and flies as genetically tractable animal models to study host–pathogen interactions. Infec Immun 73(7):3833–3841CrossRefGoogle Scholar
  92. 92.
    Naglik J, Albrecht A, Bader O, Hube B (2004) Candida albicans proteinases and host/pathogen interactions. Cell Microbiol 6(10):915–926PubMedCrossRefGoogle Scholar
  93. 93.
    Nairz M, Schroll A, Sonnweber T, Weiss G (2010) The struggle for iron–a metal at the host–pathogen interface. Cell Microbiol 12(12):1691–1702PubMedCrossRefGoogle Scholar
  94. 94.
    Nau GJ, Richmond JF, Schlesinger A, Jennings EG, Lander ES, Young RA (2002) Human macrophage activation programs induced by bacterial pathogens. Proc Nat Acad Sci 99(3):1503–1508PubMedPubMedCentralCrossRefGoogle Scholar
  95. 95.
    Navratil V, de Chassey B, Meyniel L, Delmotte S, Gautier C, André P, Lotteau V, Rabourdin-Combe C (2009) VirHostNet: a knowledge base for the management and the analysis of proteome-wide virus–host interaction networks. Nucleic Acids Res 37(suppl 1):D661–D668PubMedCrossRefGoogle Scholar
  96. 96.
    Olsen JE, Hoegh-Andersen KH, Casadesús J, Rosenkranzt J, Chadfield MS, Thomsen LE (2013) The role of flagella and chemotaxis genes in host pathogen interaction of the host adapted Salmonella enterica serovar Dublin compared to the broad host range serovar S. Typhimurium BMC Microbiol 13(1):1CrossRefGoogle Scholar
  97. 97.
    Onstad DW (1997) Ecological database of the world’s insect pathogens (edwip)Google Scholar
  98. 98.
    Pandey KC, Singh N, Arastu-Kapur S, Bogyo M, Rosenthal PJ (2006) Falstatin, a cysteine protease inhibitor of Plasmodium falciparum, facilitates erythrocyte invasion. PLoS Pathogen 2(11):e117CrossRefGoogle Scholar
  99. 99.
    Pickett BE, Sadat EL, Zhang Y, Noronha JM, Squires RB, Hunt V, Liu M, Kumar S, Zaremba S, Gu Z et al (2012) ViPR: an open bioinformatics database and analysis resource for virology research. Nucleic Acids Res 40(D1):D593–D598PubMedCrossRefGoogle Scholar
  100. 100.
    Pohlner J, Halter R, Beyreuther K, Meyer TF (1986) Gene structure and extracellular secretion of Neisseria gonorrhoeae IgA protease. Nature 325(6103):458–462CrossRefGoogle Scholar
  101. 101.
    Pukatzki S, Ma AT, Sturtevant D, Krastins B, Sarracino D, Nelson WC, Heidelberg JF, Mekalanos JJ (2006) Identification of a conserved bacterial protein secretion system in Vibrio cholerae using the Dictyostelium host model system. Proc Nat Acad Sci 103(5):1528–1533PubMedPubMedCentralCrossRefGoogle Scholar
  102. 102.
    Qi Y, Tastan O, Carbonell JG, Klein-Seetharaman J, Weston J (2010) Semi-supervised multi-task learning for predicting interactions between HIV-1 and human proteins. Bioinformatics 26(18):i645–i652PubMedPubMedCentralCrossRefGoogle Scholar
  103. 103.
    Rachman H, Strong M, Ulrichs T, Grode L, Schuchhardt J, Mollenkopf H, Kosmiadi GA, Eisenberg D, Kaufmann SH (2006) Unique transcriptome signature of Mycobacterium tuberculosis in pulmonary tuberculosis. Infect Immun 74(2):1233–1242PubMedPubMedCentralCrossRefGoogle Scholar
  104. 104.
    Raghunathan A, Reed J, Shin S, Palsson B, Daefler S (2009) Constraint-based analysis of metabolic capacity of Salmonella typhimurium during host–pathogen interaction. BMC Syst Biol 3(1):38PubMedPubMedCentralCrossRefGoogle Scholar
  105. 105.
    Rappoport N, Linial M (2012) Viral proteins acquired from a host converge to simplified domain architectures. PLoS Comput Biol 8(2):e1002,364CrossRefGoogle Scholar
  106. 106.
    Rescigno M, Borrow P (2001) The host–pathogen interaction: new themes from dendritic cell biology. Cell 106(3):267–270PubMedCrossRefGoogle Scholar
  107. 107.
    Rupp S, Sohn K (2009) Host–pathogen interactions: methods and protocols. Humana PressGoogle Scholar
  108. 108.
    Sansonetti P (2002) Host–pathogen interactions: the seduction of molecular cross talk. Gut 50(suppl 3):iii2–iii8PubMedPubMedCentralGoogle Scholar
  109. 109.
    Sassetti CM, Boyd DH, Rubin EJ (2003) Genes required for mycobacterial growth defined by high density mutagenesis. Molec Microbiol 48(1):77–84CrossRefGoogle Scholar
  110. 110.
    Sassetti CM, Rubin EJ (2003) Genetic requirements for mycobacterial survival during infection. Proc Nat Acad Sci 100(22):12,989–12,994CrossRefGoogle Scholar
  111. 111.
    Scaria V, Hariharan M, Maiti S, Pillai B, Brahmachari SK (2006) Host-virus interaction: a new role for microRNAs. Retrovirology 3(1):68PubMedPubMedCentralCrossRefGoogle Scholar
  112. 112.
    Scaria V, Hariharan M, Pillai B, Maiti S, Brahmachari SK (2007) Host–virus genome interactions: macro roles for microRNAs. Cell Microbiol 9(12):2784–2794PubMedCrossRefGoogle Scholar
  113. 113.
    Schaefer CF, Anthony K, Krupa S, Buchoff J, Day M, Hannay T, Buetow KH (2009) PID: the pathway interaction database. Nucleic Acids Res 37(suppl 1):D674–D679PubMedCrossRefGoogle Scholar
  114. 114.
    Schnappinger D, Ehrt S, Voskuil MI, Liu Y, Mangan JA, Monahan IM, Dolganov G, Efron B, Butcher PD, Nathan C et al (2003) Transcriptional adaptation of Mycobacterium tuberculosis within macrophages insights into the phagosomal environment. J Exper Med 198(5):693–704CrossRefGoogle Scholar
  115. 115.
    Sessions OM, Barrows NJ, Souza-Neto JA, Robinson TJ, Hershey CL, Rodgers MA, Ramirez JL, Dimopoulos G, Yang PL, Pearson JL et al (2009) Discovery of insect and human dengue virus host factors. Nature 458(7241):1047–1050PubMedPubMedCentralCrossRefGoogle Scholar
  116. 116.
    Sharma OP, Jadhav A, Hussain A, Kumar MS (2011) VPDB: viral protein structural database. Bioinformation 6(8):324PubMedPubMedCentralCrossRefGoogle Scholar
  117. 117.
    Singh I, Tastan O, Klein-Seetharaman J (2010) Comparison of virus interactions with human signal transduction pathways. In: Proceedings of the First ACM international conference on bioinformatics and computational biology. ACM, pp 17– 24Google Scholar
  118. 118.
    Singh SB, Davis AS, Taylor GA, Deretic V (2006) Human IRGM induces autophagy to eliminate intracellular mycobacteria. Science 313(5792):1438–1441PubMedCrossRefGoogle Scholar
  119. 119.
    Smoot D, Mobley H, Chippendale G, Lewison J, Resau J (1990) Helicobacter pylori urease activity is toxic to human gastric epithelial cells. Infec Immun 58(6):1992–1994Google Scholar
  120. 120.
    Squires B, Macken C, Garcia-Sastre A, Godbole S, Noronha J, Hunt V, Chang R, Larsen CN, Klem E, Biersack K et al (2008) BioHealthBase: informatics support in the elucidation of influenza virus host–pathogen interactions and virulence. Nucleic Acids Res 36(suppl 1):D497–D503PubMedGoogle Scholar
  121. 121.
    Sugimoto S, Iwamoto T, Takada K, Okuda Ki, Tajima A, Iwase T, Mizunoe Y (2013) Staphylococcus epidermidis Esp degrades specific proteins associated with Staphylococcus aureus biofilm formation and host–pathogen interaction. J Bacteriol 195(8):1645–1655PubMedPubMedCentralCrossRefGoogle Scholar
  122. 122.
    Talaat AM, Lyons R, Howard ST, Johnston SA (2004) The temporal expression profile of Mycobacterium tuberculosis infection in mice. Proc Nat Acad Sci USA 101(13):4602–4607PubMedPubMedCentralCrossRefGoogle Scholar
  123. 123.
    Tastan O, Qi Y, Carbonell JG, Klein-Seetharaman J (2009) Prediction of interactions between HIV-1 and human proteins by information integration. In: Pacific Symposium on biocomputing. NIH Public Access, p 516Google Scholar
  124. 124.
    Tato C, Hunter C (2002) Host–pathogen interactions: subversion and utilization of the NF- ?B pathway during infection. Infect Immun 70(7):3311–3317PubMedPubMedCentralCrossRefGoogle Scholar
  125. 125.
    Tekir SD, Ċakır T, Ardıċ E, Sayılırbaṡ AS, Konuk G, Konuk M, Sarıyer H, Uġurlu A, Karadeniz İ, Özgür A et al (2013) PHISTO: pathogen–host interaction search tool. Bioinformatics 29 (10):1357–1358Google Scholar
  126. 126.
    Thieu T, Joshi S, Warren S, Korkin D (2012) Literature mining of host–pathogen interactions: comparing feature-based supervised learning and language-based approaches. Bioinformatics 28(6):867–875PubMedCrossRefGoogle Scholar
  127. 127.
    Tobin DM, May RC, Wheeler RT (2012) Zebrafish: a see-through host and a fluorescent toolbox to probe host–pathogen interaction. PLoS Pathogens 8(1)Google Scholar
  128. 128.
    Torrelles JB, Schlesinger LS (2010) Diversity in Mycobacterium tuberculosis mannosylated cell wall determinants impacts adaptation to the host. Tuberculosis 90(2):84–93PubMedPubMedCentralCrossRefGoogle Scholar
  129. 129.
    Vergne I, Singh S, Roberts E, Kyei G, Master S, Harris J, Haro Sd, Naylor J, Davis A, Delgado M et al (2006) Autophagy in immune defense against Mycobacterium tuberculosis. Autophagy 2 (3):175–178PubMedCrossRefGoogle Scholar
  130. 130.
    Via A, Uyar B, Brun C, Zanzoni A (2015) How pathogens use linear motifs to perturb host cell networks. Trends Biochem Sci 40(1):36–48PubMedCrossRefGoogle Scholar
  131. 131.
    Vodovar N, Acosta C, Lemaitre B, Boccard F (2004) Drosophila: a polyvalent model to decipher host–pathogen interactions. Trends Microbiol 12(5):235–242PubMedCrossRefGoogle Scholar
  132. 132.
    Wang Y, Zhang Q, Sun Ma, Guo D (2011) High-accuracy prediction of bacterial type III secreted effectors based on position-specific amino acid composition profiles. Bioinformatics 27(6):777–784PubMedCrossRefGoogle Scholar
  133. 133.
    Wattam AR, Abraham D, Dalay O, Disz TL, Driscoll T, Gabbard JL, Gillespie JJ, Gough R, Hix D, Kenyon R et al (2013) PATRIC, the bacterial bioinformatics database and analysis resource. Nucleic Acids Res:gkt1099Google Scholar
  134. 134.
    Weekes MP, Tomasec P, Huttlin EL, Fielding CA, Nusinow D, Stanton RJ, Wang EC, Aicheler R, Murrell I, Wilkinson GW et al (2014) Quantitative temporal viromics: an approach to investigate host–pathogen interaction. Cell 157(6):1460–1472PubMedPubMedCentralCrossRefGoogle Scholar
  135. 135.
    Welch R, Dellinger E, Minshew B, Falkow S (1981) Haemolysin contributes to virulence of extra-intestinal. E. coli infections Nature 294(5842):665–667PubMedCrossRefGoogle Scholar
  136. 136.
    Winnenburg R, Baldwin TK, Urban M, Rawlings C, Köhler J, Hammond-Kosack KE (2006) PHI-base: a new database for pathogen host interactions. Nucleic Acids Res 34(suppl 1):D459–D464PubMedCrossRefGoogle Scholar
  137. 137.
    Winnenburg R, Urban M, Beacham A, Baldwin TK, Holland S, Lindeberg M, Hansen H, Rawlings C, Hammond-Kosack KE, Köhler J (2008) PHI-base update: additions to the pathogen–host interaction database. Nucleic Acids Res 36(suppl 1):D572– D576PubMedGoogle Scholar
  138. 138.
    Wuchty S (2011) Computational prediction of host-parasite protein interactions between P. falciparum and H. sapiens. PLoS One 6(11):e26,960CrossRefGoogle Scholar
  139. 139.
    Xiang Z, Tian Y, He Y et al (2007) PHIDIAS: a pathogen-host interaction data integration and analysis system. Genom Biol 8(7):R150CrossRefGoogle Scholar
  140. 140.
    Yang J, Chen L, Sun L, Yu J, Jin Q (2008) VFDB 2008 release: an enhanced web-based resource for comparative pathogenomics. Nucleic Acids Res 36(suppl 1):D539–D542PubMedGoogle Scholar
  141. 141.
    Zelle MR (1942) Genetic constitutions of host and pathogen in mouse typhoid. J Infect Dis 71(2):131–152CrossRefGoogle Scholar
  142. 142.
    Zhou C, Smith J, Lam M, Zemla A, Dyer MD, Slezak T (2007) MvirDB-a microbial database of protein toxins, virulence factors and antibiotic resistance genes for bio-defence applications. Nucleic Acids Res 35 (suppl 1):D391– D394PubMedCrossRefGoogle Scholar
  143. 143.
    Zhou H, Xu M, Huang Q, Gates AT, Zhang XD, Castle JC, Stec E, Ferrer M, Strulovici B, Hazuda DJ et al (2008) Genome-scale RNAi screen for host factors required for HIV replication. Cell Host Microbe 4(5):495–504PubMedCrossRefGoogle Scholar
  144. 144.
    Zychlinsky A, Sansonetti PJ (1997) Apoptosis as a proinflammatory event: what can we learn from bacteria-induced cell death? Trends Microbiol 5(5):201–204PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Machine Intelligence UnitIndian Statistical InstituteKolkataIndia

Personalised recommendations