Molecular characteristics of penicillin-binding protein 2b, 2x and 1a sequences in Streptococcus pneumoniae isolates causing invasive diseases among children in Northeast China

  • X. Zhou
  • J. Liu
  • Z. Zhang
  • Y. Liu
  • Y. Wang
  • Y. LiuEmail author
Original Article


Streptococcus pneumoniae is one of the common pathogens causing severe invasive infections in children. This study aimed to investigate the serotype distribution and variations of penicillin-binding proteins (PBPs) 2b, 2x and 1a in S. pneumoniae isolates causing invasive diseases in Northeast China. A total of 256 strains were isolated from children with invasive pneumococcal disease (IPD) from January 2000 to October 2014. All strains were serotyped and determined for antibiotic resistance. The amplicons of penicillin-binding domains in pbp1a, pbp2b and pbp2x genes were sequenced for variation identification. The most prevalent serotypes of isolates in IPD children were 19A, 14, 19F, 23F and 6B. 19A and 19F were the most frequent serotypes of penicillin-resistant S. pneumoniae (PRSP), which present with high resistance to amoxicillin, cefotaxime, ceftriaxone and meropenem. The numbers of amino acid substitutions of penicillin-non-susceptible S. pneumoniae (PNSP) isolates were higher than those of penicillin-sensitive S. pneumoniae isolates in all the PBP genes (p < 0.01). The patterns of amino acid mutation in PBP2b, PBP2x and PBP1a were unique and different from those of other countries. All of the serotype 19A and 19F PRSP isolates carried 25 amino acid mutations, including Ala618 → Gly between positions 560 and 675 in PBP2b and Thr338 → Ala substitutions in PBP2x. The amino acid alterations in PBP2b, PBP2x and PBP1a from S. pneumoniae were closely associated with resistance to β-lactam antibiotics. This study provides new data for further monitoring of genetic changes related to the emergence and spread of resistance to β-lactam antibiotics in China.


Amino Acid Substitution Cerebral Spinal Fluid Invasive Pneumococcal Disease Amino Acid Mutation Serotype Distribution 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Compliance with ethical standards


No funds were received for the realisation of this work.

Conflict of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    World Health Organization (2012) Pneumococcal vaccines WHO position paper—2012. Wkly Epidemiol Rec 87(14):129–144Google Scholar
  2. 2.
    Chen Y, Deng W, Wang SM, Mo QM, Jia H, Wang Q, Li SG, Li X, Yao BD, Liu CJ, Zhan YQ, Ji C, Lopez AL, Wang XY (2011) Burden of pneumonia and meningitis caused by Streptococcus pneumoniae in China among children under 5 years of age: a systematic literature review. PLoS One 6(11), e27333. doi: 10.1371/journal.pone.0027333 CrossRefPubMedPubMedCentralGoogle Scholar
  3. 3.
    Jones RN, Sader HS, Moet GJ, Farrell DJ (2010) Declining antimicrobial susceptibility of Streptococcus pneumoniae in the United States: report from the SENTRY antimicrobial surveillance program (1998–2009). Diagn Microbiol Infect Dis 68(3):334–336. doi: 10.1016/j.diagmicrobio.2010.08.024 CrossRefPubMedGoogle Scholar
  4. 4.
    Kim SH, Song JH, Chung DR, Thamlikitkul V, Yang Y, Wang H, Lu M, So TM, Hsueh PR, Yasin RM, Carlos CC, Pham HV, Lalitha MK, Shimono N, Perera J, Shibl AM, Baek JY, Kang CI, Ko KS, Peck KR; ANSORP Study Group (2012) Changing trends in antimicrobial resistance and serotypes of Streptococcus pneumoniae isolates in Asian countries: an Asian Network for Surveillance of Resistant Pathogens (ANSORP) study. Antimicrob Agents Chemother 56(3):1418–1426. doi: 10.1128/AAC.05658-11 CrossRefPubMedPubMedCentralGoogle Scholar
  5. 5.
    Dai LH, Dong L, Li HY, Su MS (2015) Control study on antimicrobial resistance of invasive and non-invasive Streptococcus pneumoniae in children. Zhongguo Dang Dai Er Ke Za Zhi 17(4):303–307. doi: 10.7499/j.issn.1008-8830.2015.04.002 PubMedGoogle Scholar
  6. 6.
    Jacobs MR (2008) Antimicrobial-resistant Streptococcus pneumoniae: trends and management. Expert Rev Anti Infect Ther 6(5):619–635. doi: 10.1586/14787210.6.5.619 CrossRefPubMedGoogle Scholar
  7. 7.
    Zapun A, Contreras-Martel C, Vernet T (2008) Penicillin-binding proteins and beta-lactam resistance. FEMS Microbiol Rev 32(2):361–385. doi: 10.1111/j.1574-6976.2007.00095.x CrossRefPubMedGoogle Scholar
  8. 8.
    Navarre WW, Schneewind O (1999) Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiol Mol Biol Rev 63(1):174–229PubMedPubMedCentralGoogle Scholar
  9. 9.
    Grebe T, Hakenbeck R (1996) Penicillin-binding proteins 2b and 2x of Streptococcus pneumoniae are primary resistance determinants for different classes of beta-lactam antibiotics. Antimicrob Agents Chemother 40(4):829–834PubMedPubMedCentralGoogle Scholar
  10. 10.
    Nagai K, Davies TA, Jacobs MR, Appelbaum PC (2002) Effects of amino acid alterations in penicillin-binding proteins (PBPs) 1a, 2b, and 2x on PBP affinities of penicillin, ampicillin, amoxicillin, cefditoren, cefuroxime, cefprozil, and cefaclor in 18 clinical isolates of penicillin-susceptible, -intermediate, and -resistant pneumococci. Antimicrob Agents Chemother 46(5):1273–1280CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Smith AM, Klugman KP (1998) Alterations in PBP 1A essential-for high-level penicillin resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother 42(6):1329–1333PubMedPubMedCentralGoogle Scholar
  12. 12.
    Asahi Y, Takeuchi Y, Ubukata K (1999) Diversity of substitutions within or adjacent to conserved amino acid motifs of penicillin-binding protein 2X in cephalosporin-resistant Streptococcus pneumoniae isolates. Antimicrob Agents Chemother 43(5):1252–1255PubMedPubMedCentralGoogle Scholar
  13. 13.
    Clinical and Laboratory Standards Institute (CLSI) (2013) Performance standards for antimicrobial susceptibility testing; Twenty-second informational supplement. CLSI document M100-S22. CLSI, Wayne, PAGoogle Scholar
  14. 14.
    Sørensen UB (1993) Typing of pneumococci by using 12 pooled antisera. J Clin Microbiol 31(8):2097–2100PubMedPubMedCentralGoogle Scholar
  15. 15.
    Zhanel GG, Wang X, Nichol K, Nikulin A, Wierzbowski AK, Mulvey M, Hoban DJ (2006) Molecular characterisation of Canadian paediatric multidrug-resistant Streptococcus pneumoniae from 1998–2004. Int J Antimicrob Agents 28(5):465–471. doi: 10.1016/j.ijantimicag.2006.08.005 CrossRefPubMedGoogle Scholar
  16. 16.
    Baek JY, Ko KS, Oh WS, Jung SI, Kim YS, Chang HH, Lee H, Kim SW, Peck KR, Lee NY, Song JH (2004) Unique variations of pbp2b sequences in penicillin-nonsusceptible Streptococcus pneumoniae isolates from Korea. J Clin Microbiol 42(4):1746–1750CrossRefPubMedPubMedCentralGoogle Scholar
  17. 17.
    Kosowska K, Jacobs MR, Bajaksouzian S, Koeth L, Appelbaum PC (2004) Alterations of penicillin-binding proteins 1A, 2X, and 2B in Streptococcus pneumoniae isolates for which amoxicillin MICs are higher than penicillin MICs. Antimicrob Agents Chemother 48(10):4020–4022. doi: 10.1128/AAC.48.10.4020-4022.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Granger D, Boily-Larouche G, Turgeon P, Weiss K, Roger M (2006) Molecular characteristics of pbp1a and pbp2b in clinical Streptococcus pneumoniae isolates in Quebec, Canada. J Antimicrob Chemother 57(1):61–70. doi: 10.1093/jac/dki401 CrossRefPubMedGoogle Scholar
  19. 19.
    Pineda V, Fontanals D, Larramona H, Domingo M, Anton J, Segura F (2002) Epidemiology of invasive Streptococcus pneumoniae infections in children in an area of Barcelona, Spain. Acta Paediatr 91(11):1251–1256CrossRefPubMedGoogle Scholar
  20. 20.
    Zhao C, Zhang F, Chu Y, Liu Y, Cao B, Chen M, Yu Y, Liao K, Zhang L, Sun Z, Hu B, Lei J, Hu Z, Zhang X, Wang H (2013) Phenotypic and genotypic characteristic of invasive pneumococcal isolates from both children and adult patients from a multicenter surveillance in China 2005–2011. PLoS One 8(12), e82361. doi: 10.1371/journal.pone.0082361 CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Metcalf BJ, Gertz RE Jr, Gladstone RA, Walker H, Sherwood LK, Jackson D, Li Z, Law C, Hawkins PA, Chochua S, Sheth M, Rayamajhi N, Bentley SD, Kim L, Whitney CG, McGee L, Beall B; Active Bacterial Core surveillance team (2015) Strain features and distributions in pneumococci from children with invasive disease before and after 13-valent conjugate vaccine implementation in the USA. Clin Microbiol Infect. doi: 10.1016/j.cmi.2015.08.027 PubMedGoogle Scholar
  22. 22.
    Beall B (2007) Vaccination with the pneumococcal 7-valent conjugate: a successful experiment but the species is adapting. Expert Rev Vaccines 6(3):297–300. doi: 10.1586/14760584.6.3.297 CrossRefPubMedGoogle Scholar
  23. 23.
    Reinert R, Jacobs MR, Kaplan SL (2010) Pneumococcal disease caused by serotype 19A: review of the literature and implications for future vaccine development. Vaccine 28(26):4249–4259. doi: 10.1016/j.vaccine.2010.04.020 CrossRefPubMedGoogle Scholar
  24. 24.
    Choi EH, Kim SH, Eun BW, Kim SJ, Kim NH, Lee J, Lee HJ (2008) Streptococcus pneumoniae serotype 19A in children, South Korea. Emerg Infect Dis 14(2):275–281. doi: 10.3201/eid1402.070807 CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Xue L, Yao K, Xie G, Zheng Y, Wang C, Shang Y, Wang H, Wan L, Liu L, Li C, Ji W, Xu X, Wang Y, Xu P, Liu Z, Yu S, Yang Y (2010) Serotype distribution and antimicrobial resistance of Streptococcus pneumoniae isolates that cause invasive disease among Chinese children. Clin Infect Dis 50(5):741–744. doi: 10.1086/650534 CrossRefPubMedGoogle Scholar
  26. 26.
    Wagner AL, Sun X, Montgomery JP, Huang Z, Boulton ML (2014) The impact of residency and urbanicity on Haemophilus influenzae type b and pneumococcal immunization in Shanghai children: a retrospective cohort study. PLoS One 9(5), e97800. doi: 10.1371/journal.pone.0097800 CrossRefPubMedPubMedCentralGoogle Scholar
  27. 27.
    Imöhl M, Möller J, Reinert RR, Perniciaro S, van der Linden M, Aktas O (2015) Pneumococcal meningitis and vaccine effects in the era of conjugate vaccination: results of 20 years of nationwide surveillance in Germany. BMC Infect Dis 15:61. doi: 10.1186/s12879-015-0787-1 CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Greenberg D, Givon-Lavi N, Ben-Shimol S, Ziv JB, Dagan R (2015) Impact of PCV7/PCV13 introduction on community-acquired alveolar pneumonia in children <5 years. Vaccine 33(36):4623–4629. doi: 10.1016/j.vaccine.2015.06.062 CrossRefPubMedGoogle Scholar
  29. 29.
    Ceyhan M, Ozsurekci Y, Gürler N, Öksüz L, Aydemir S, Ozkan S, Yuksekkaya S, Emiroglu MK, Gültekin M, Yaman A, Kiremitci A, Yanık K, Karli A, Ozcinar H, Aydin F, Bayramoglu G, Zer Y, Gulay Z, Gayyurhan ED, Gül M, Özakın C, Güdücüoğlu H, Perçin D, Akpolat N, Ozturk C, Camcıoğlu Y, Öncel EK, Çelik M, Şanal L, Uslu H (2015) Serotype distribution of Streptococcus pneumoniae in children with invasive diseases in Turkey: 2008–2014. Hum Vaccin Immunother. doi: 10.1080/21645515.2015.1078952 Google Scholar
  30. 30.
    Pagliero E, Chesnel L, Hopkins J, Croizé J, Dideberg O, Vernet T, Di Guilmi AM (2004) Biochemical characterization of Streptococcus pneumoniae penicillin-binding protein 2b and its implication in beta-lactam resistance. Antimicrob Agents Chemother 48(5):1848–1855CrossRefPubMedPubMedCentralGoogle Scholar
  31. 31.
    Granger D, Boily-Larouche G, Turgeon P, Weiss K, Roger M (2005) Genetic analysis of pbp2x in clinical Streptococcus pneumoniae isolates in Quebec, Canada. J Antimicrob Chemother 55(6):832–839. doi: 10.1093/jac/dki118 CrossRefPubMedGoogle Scholar
  32. 32.
    Izdebski R, Rutschmann J, Fiett J, Sadowy E, Gniadkowski M, Hryniewicz W, Hakenbeck R (2008) Highly variable penicillin resistance determinants PBP 2x, PBP 2b, and PBP 1a in isolates of two Streptococcus pneumoniae clonal groups, Poland 23F-16 and Poland 6B-20. Antimicrob Agents Chemother 52(3):1021–1027. doi: 10.1128/AAC.01082-07 CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Tian SF, Chu YZ, Chen BY (2008) Molecular characteristics of penicillin-binding protein 2b, 2x, and 1a sequences in penicillin-nonsusceptible Streptococcus pneumoniae isolates in Shenyang, China. Can J Microbiol 54(6):489–494. doi: 10.1139/w08-030 CrossRefPubMedGoogle Scholar
  34. 34.
    Mouz N, Gordon E, Di Guilmi AM, Petit I, Pétillot Y, Dupont Y, Hakenbeck R, Vernet T, Dideberg O (1998) Identification of a structural determinant for resistance to beta-lactam antibiotics in Gram-positive bacteria. Proc Natl Acad Sci U S A 95(23):13403–13406CrossRefPubMedPubMedCentralGoogle Scholar
  35. 35.
    Chesnel L, Pernot L, Lemaire D, Champelovier D, Croizé J, Dideberg O, Vernet T, Zapun A (2003) The structural modifications induced by the M339F substitution in PBP2x from Streptococcus pneumoniae further decreases the susceptibility to beta-lactams of resistant strains. J Biol Chem 278(45):44448–44456. doi: 10.1074/jbc.M305948200 CrossRefPubMedGoogle Scholar
  36. 36.
    Lu WP, Kincaid E, Sun Y, Bauer MD (2001) Kinetics of beta-lactam interactions with penicillin-susceptible and -resistant penicillin-binding protein 2x proteins from Streptococcus pneumoniae. Involvement of acylation and deacylation in beta-lactam resistance. J Biol Chem 276(34):31494–31501. doi: 10.1074/jbc.M102499200 CrossRefPubMedGoogle Scholar
  37. 37.
    Sanbongi Y, Ida T, Ishikawa M, Osaki Y, Kataoka H, Suzuki T, Kondo K, Ohsawa F, Yonezawa M (2004) Complete sequences of six penicillin-binding protein genes from 40 Streptococcus pneumoniae clinical isolates collected in Japan. Antimicrob Agents Chemother 48(6):2244–2250. doi: 10.1128/AAC.48.6.2244-2250.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    du Plessis M, Bingen E, Klugman KP (2002) Analysis of penicillin-binding protein genes of clinical isolates of Streptococcus pneumoniae with reduced susceptibility to amoxicillin. Antimicrob Agents Chemother 46(8):2349–2357CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Davies TA, Flamm RK, Lynch AS (2012) Activity of ceftobiprole against Streptococcus pneumoniae isolates exhibiting high-level resistance to ceftriaxone. Int J Antimicrob Agents 39(6):534–538. doi: 10.1016/j.ijantimicag.2012.02.016 CrossRefPubMedGoogle Scholar
  40. 40.
    Nichol KA, Zhanel GG, Hoban DJ (2002) Penicillin-binding protein 1A, 2B, and 2X alterations in Canadian isolates of penicillin-resistant Streptococcus pneumoniae. Antimicrob Agents Chemother 46(10):3261–3264CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Reichmann P, König A, Marton A, Hakenbeck R (1996) Penicillin-binding proteins as resistance determinants in clinical isolates of Streptococcus pneumoniae. Microb Drug Resist 2(2):177–181CrossRefPubMedGoogle Scholar
  42. 42.
    Job V, Carapito R, Vernet T, Dessen A, Zapun A (2008) Common alterations in PBP1a from resistant Streptococcus pneumoniae decrease its reactivity toward beta-lactams: structural insights. J Biol Chem 283(8):4886–4894. doi: 10.1074/jbc.M706181200 CrossRefPubMedGoogle Scholar
  43. 43.
    Clinical and Laboratory Standards Institute (CLSI) (2007) Performance standards for antimicrobial susceptibility testing; Seventeenth informational supplement. CLSI document M100-S17. CLSI, Wayne, PAGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • X. Zhou
    • 1
  • J. Liu
    • 1
  • Z. Zhang
    • 1
  • Y. Liu
    • 1
  • Y. Wang
    • 1
  • Y. Liu
    • 1
    Email author
  1. 1.Department of Clinical LaboratoryThe Affiliated Shengjing Hospital, China Medical UniversityShenyangChina

Personalised recommendations