Meropenem dosing requirements against Enterobacteriaceae in critically ill patients: influence of renal function, geographical area and presence of extended-spectrum β-lactamases

  • A. Isla
  • A. Canut
  • J. Arribas
  • E. Asín-Prieto
  • A. Rodríguez-GascónEmail author
Original Article


The aim of this study was the evaluation of the influence of the susceptibility patterns of Escherichia coli and Klebsiella pneumoniae isolates, specifically the presence of extended-spectrum β-lactamases and the geographical area (Europe and USA), on the meropenem dosing requirements in critically ill patients with different degrees of renal function by estimation of the probability of pharmacokinetic/pharmacodynamic (PK/PD) target attainment. Additionally, estimation of the PK/PD breakpoints according to the European Committee on Antimicrobial Susceptibility Testing (EUCAST) approach was also an objective. Six dosing regimens were evaluated: 0.5 g, 1 g and 2 g every 8 h given as 0.5-h or 3-h infusions. Pharmacokinetic data were obtained from the literature, and susceptibility data to meropenem for E. coli and K. pneumoniae were collected from the Tigecycline Evaluation and Surveillance Trial (T.E.S.T.) surveillance study. For the same dose level, the 3-h infusion provided a probability of target attainment (PTA) ≥90 % for minimum inhibitory concentration (MIC) values up to two-fold dilution higher than those obtained with the 0.5-h infusion. For E. coli, the cumulative fraction of response (CFR) was 100 % in most cases, and neither the dose nor the infusion length nor the geographical area significantly affected the probability to reach the target. With regards to K. pneumoniae, the CFR increased when increasing the dose and decreasing the creatinine clearance (CLCR). The CFR for Spanish and USA strains was higher than that calculated for European strains. Meropenem PK/PD breakpoints are dependent on the dose, infusion length and CLCR, ranging from 2 to 32 mg/L. Based on our results, meropenem administered as a extended infusion is the best option to treat infections due to E. coli and K. pneumoniae.


Minimum Inhibitory Concentration Meropenem Susceptibility Pattern Virtual Patient EUCAST 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Department of Education, Universities and Research (IT341-10), Basque Government, Spain. We thank the University of the Basque Country UPV/EHU for the grant awarded to E. Asín-Prieto.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A et al (2012) Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 55:943–950CrossRefPubMedGoogle Scholar
  2. 2.
    Daikos GL, Markogiannakis A (2011) Carbapenemase-producing Klebsiella pneumoniae: (when) might we still consider treating with carbapenems? Clin Microbiol Infect 17:1135–1141CrossRefPubMedGoogle Scholar
  3. 3.
    Petrosillo N, Giannella M, Lewis R, Viale P (2013) Treatment of carbapenem-resistant Klebsiella pneumoniae: the state of the art. Expert Rev Anti Infect Ther 11:159–177CrossRefPubMedGoogle Scholar
  4. 4.
    Paul M, Carmeli Y, Durante-Mangoni E, Mouton JW, Tacconelli E, Theuretzbacher U et al (2014) Combination therapy for carbapenem-resistant Gram-negative bacteria. J Antimicrob Chemother 69:2305–2309CrossRefPubMedGoogle Scholar
  5. 5.
    Wiseman LR, Wagstaff AJ, Brogden RN, Bryson HM (1995) Meropenem. A review of its antibacterial activity, pharmacokinetic properties and clinical efficacy. Drugs 50:73–101CrossRefPubMedGoogle Scholar
  6. 6.
    Zavascki AP, Bulitta JB, Landersdorfer CB (2013) Combination therapy for carbapenem-resistant gram-negative bacteria. Expert Rev Anti Infect Ther 11:1333–1353CrossRefPubMedGoogle Scholar
  7. 7.
    van Duin D, Kaye KS, Neuner EA, Bonomo RA (2013) Carbapenem-resistant Enterobacteriaceae: a review of treatment and outcomes. Diagn Microbiol Infect Dis 75:115–120PubMedCentralCrossRefPubMedGoogle Scholar
  8. 8.
    Tzouvelekis LS, Markogiannakis A, Psichogiou M, Tassios PT, Daikos GL (2012) Carbapenemases in Klebsiella pneumoniae and other Enterobacteriaceae: an evolving crisis of global dimensions. Clin Microbiol Rev 25:682–707PubMedCentralCrossRefPubMedGoogle Scholar
  9. 9.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2015) Breakpoint tables for interpretation of MICs and zone diameters. Version 5.0. Available online at:
  10. 10.
    Asín-Prieto E, Rodríguez-Gascón A, Isla A (2015) Applications of the pharmacokinetic/pharmacodynamic (PK/PD) analysis of antimicrobial agents. J Infect Chemother 21:319–329CrossRefPubMedGoogle Scholar
  11. 11.
    Roberts JA, Kirkpatrick CM, Lipman J (2011) Monte Carlo simulations: maximizing antibiotic pharmacokinetic data to optimize clinical practice for critically ill patients. J Antimicrob Chemother 66:227–231CrossRefPubMedGoogle Scholar
  12. 12.
    Canut A, Isla A, Betriu C, Gascón AR (2012) Pharmacokinetic–pharmacodynamic evaluation of daptomycin, tigecycline, and linezolid versus vancomycin for the treatment of MRSA infections in four western European countries. Eur J Clin Microbiol Infect Dis 31:2227–2235CrossRefPubMedGoogle Scholar
  13. 13.
    Kitzes-Cohen R, Farin D, Piva G, De Myttenaere-Bursztein SA (2002) Pharmacokinetics and pharmacodynamics of meropenem in critically ill patients. Int J Antimicrob Agents 19:105–110CrossRefPubMedGoogle Scholar
  14. 14.
    Roberts JA, Kirkpatrick CM, Roberts MS, Robertson TA, Dalley AJ, Lipman J (2009) Meropenem dosing in critically ill patients with sepsis and without renal dysfunction: intermittent bolus versus continuous administration? Monte Carlo dosing simulations and subcutaneous tissue distribution. J Antimicrob Chemother 64:142–150CrossRefPubMedGoogle Scholar
  15. 15.
    Product Information. Meronem I.V.®, meropenem trihydrate for injection. AstraZeneca, Madrid, Spain. Revised February 2015Google Scholar
  16. 16.
    Owens RC Jr, Bhavnani SM, Ambrose PG (2005) Assessment of pharmacokinetic–pharmacodynamic target attainment of gemifloxacin against Streptococcus pneumoniae. Diagn Microbiol Infect Dis 51:45–49CrossRefPubMedGoogle Scholar
  17. 17.
    Mouton JW, Brown DF, Apfalter P, Cantón R, Giske CG, Ivanova M, MacGowan AP, Rodloff A, Soussy CJ, Steinbakk M, Kahlmeter G (2012) The role of pharmacokinetics/pharmacodynamics in setting clinical MIC breakpoints: the EUCAST approach. Clin Microbiol Infect 18:E37–E45CrossRefPubMedGoogle Scholar
  18. 18.
    Mouton JW, Dudley MN, Cars O, Derendorf H, Drusano GL (2005) Standardization of pharmacokinetic/pharmacodynamic (PK/PD) terminology for anti-infective drugs: an update. J Antimicrob Chemother 55:601–607CrossRefPubMedGoogle Scholar
  19. 19.
    Zelenitsky SA, Ariano RE, Zhanel GG (2011) Pharmacodynamics of empirical antibiotic monotherapies for an intensive care unit (ICU) population based on Canadian surveillance data. J Antimicrob Chemother 66:343–349CrossRefPubMedGoogle Scholar
  20. 20.
    Bradley JS, Dudley MN, Drusano GL (2003) Predicting efficacy of antiinfectives with pharmacodynamics and Monte Carlo simulation. Pediatr Infect Dis J 22:982–992CrossRefPubMedGoogle Scholar
  21. 21.
    Clinical and Laboratory Standards Institute (CLSI) (2015) Performance standards for antimicrobial susceptibility testing; Twenty-fifth informational supplement. CLSI document M100-S25. CLSI, Wayne, PA, USAGoogle Scholar
  22. 22.
    Li C, Du X, Kuti JL, Nicolau DP (2007) Clinical pharmacodynamics of meropenem in patients with lower respiratory tract infections. Antimicrob Agents Chemother 51:1725–1730PubMedCentralCrossRefPubMedGoogle Scholar
  23. 23.
    Ariano RE, Nyhlén A, Donnelly JP, Sitar DS, Harding GK, Zelenitsky SA (2005) Pharmacokinetics and pharmacodynamics of meropenem in febrile neutropenic patients with bacteremia. Ann Pharmacother 39:32–38CrossRefPubMedGoogle Scholar
  24. 24.
    Huttner A, Von Dach E, Renzoni A, Huttner BD, Affaticati M, Pagani L et al (2015) Augmented renal clearance, low β-lactam concentrations and clinical outcomes in the critically ill: an observational prospective cohort study. Int J Antimicrob Agents 45:385–392CrossRefPubMedGoogle Scholar
  25. 25.
    Tröger U, Drust A, Martens-Lobenhoffer J, Tanev I, Braun-Dullaeus RC, Bode-Böger SM (2012) Decreased meropenem levels in Intensive Care Unit patients with augmented renal clearance: benefit of therapeutic drug monitoring. Int J Antimicrob Agents 40:370–372CrossRefPubMedGoogle Scholar
  26. 26.
    Carlier M, Carrette S, Roberts JA, Stove V, Verstraete A, Hoste E et al (2013) Meropenem and piperacillin/tazobactam prescribing in critically ill patients: does augmented renal clearance affect pharmacokinetic/pharmacodynamic target attainment when extended infusions are used? Crit Care 17:R84PubMedCentralCrossRefPubMedGoogle Scholar
  27. 27.
    Glasner C, Albiger B, Buist G, Tambić Andrasević A, Canton R, Carmeli Y et al (2013) Carbapenemase-producing Enterobacteriaceae in Europe: a survey among national experts from 39 countries, February 2013. Euro Surveill 18. pii: 20525Google Scholar
  28. 28.
    Oteo J, Ortega A, Bartolomé R, Bou G, Conejo C, Fernández-Martínez M et al (2015) Prospective multicenter study of carbapenemase-producing enterobacteriaceae from 83 hospitals in Spain reveals high in vitro susceptibility to colistin and meropenem. Antimicrob Agents Chemother 59:3406–3412PubMedCentralCrossRefPubMedGoogle Scholar
  29. 29.
    Adler A, Ben-Dalak M, Chmelnitsky I, Carmeli Y (2015) Effect of resistance mechanisms on the inoculum effect of carbapenem in Klebsiella pneumoniae isolates with borderline carbapenem resistance. Antimicrob Agents Chemother 59:5014–5017PubMedCentralCrossRefPubMedGoogle Scholar
  30. 30.
    Centers for Disease Control and Prevention (CDC) (2013) Antibiotic resistance threats in the United States, 2013. U.S. Department of Health and Human Services, Atlanta, GA, USAGoogle Scholar
  31. 31.
    Cefepime breakpoint change for Enterobacteriaceae and introduction of the susceptible-dose dependent (SDD) interpretive category. Available online at:
  32. 32.
    Mouton JW (2014) Setting clinical MIC breakpoints from a PK/PD point of view: it is the dose that matters. In: Vinks AA, Derendorf H, Mouton JW (eds) Fundamentals of antimicrobial pharmacokinetics and pharmacodynamics. Springer, New York, pp 45–61CrossRefGoogle Scholar
  33. 33.
    Li C, Kuti JL, Nightingale CH, Nicolau DP (2006) Population pharmacokinetic analysis and dosing regimen optimization of meropenem in adult patients. J Clin Pharmacol 46:1171–1178CrossRefPubMedGoogle Scholar
  34. 34.
    Ulldemolins M, Soy D, Llaurado-Serra M, Vaquer S, Castro P, Rodríguez AH, Pontes C, Calvo G, Torres A, Martín-Loeches I (2015) Meropenem population pharmacokinetics in critically ill patients with septic shock and continuous renal replacement therapy: influence of residual diuresis on dose requirements. Antimicrob Agent Chemother 59:5520–5528. doi: 10.1128/AAC.00712-15 CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • A. Isla
    • 1
    • 2
  • A. Canut
    • 3
    • 4
  • J. Arribas
    • 5
  • E. Asín-Prieto
    • 1
    • 2
  • A. Rodríguez-Gascón
    • 1
    • 2
    Email author
  1. 1.Pharmacokinetics, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of PharmacyUniversity of the Basque Country UPV/EHUVitoria-GasteizSpain
  2. 2.Centro de Investigación Lascaray IkerguneaUniversity of the Basque Country UPV/EHUVitoria-GasteizSpain
  3. 3.Microbiology Service, Hospital Universitario de Álava (HUA)Servicio Vasco de Salud OsakidetzaVitoria-GasteizSpain
  4. 4.Instituto de Investigación Sanitaria de Álava (BIOARABA)Servicio Vasco de Salud OsakidetzaVitoria-GasteizSpain
  5. 5.Microbiology ServiceHospital Clínico UniversitarioZaragozaSpain

Personalised recommendations