Detection of signature volatiles for cariogenic microorganisms

  • M. Hertel
  • R. Preissner
  • B. Gillissen
  • A. M. Schmidt-Westhausen
  • S. Paris
  • S. PreissnerEmail author
Original Article


The development of a breath test by the identification of volatile organic compounds (VOCs) emitted by cariogenic bacteria is a promising approach for caries risk assessment and early caries detection. The aim of the present study was to investigate the volatile profiles of three major cariogenic bacteria and to assess whether the obtained signatures were species-specific. Therefore, the headspaces above cultures of Streptococcus mutans, Lactobacillus salivarius and Propionibacterium acidifaciens were analysed after 24 and 48 h of cultivation using gas chromatography and mass spectrometry. A volatile database was queried for the obtained VOC profiles. Sixty-four compounds were detected within the analysed culture headspaces and were absent (36) or at least only present in minor amounts (28) in the control headspace. For S. mutans 18, for L. salivarius three and for P. acidifaciens five compounds were found to be unique signature VOCs. Database matching revealed that the identified signatures of all bacteria were unique. Furthermore, 13 of the 64 detected substances have not been previously reported to be emitted by bacteria or fungi. Specific VOC signatures were found in all the investigated bacteria cultures. The obtained results encourage further research to investigate the transferability to in vivo conditions towards the development of a breath test.


Breath Test Streptococcus Mutans Volatile Profile Glycol Ether Cariogenic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Mss. Anja and Antje Richter for their most valuable assistance in the laboratory and Janette Nickel for her help with the mVOC database.

Compliance with ethical standards

Conflict of interest

The authors state that they have no affiliations with or involvement in any organisation or entity with any financial interest or non-financial interest in the subject matter or materials discussed in this article.


  1. 1.
    Osborne JW, Summitt JB (1998) Extension for prevention: is it relevant today? Am J Dent 11(4):189–196PubMedGoogle Scholar
  2. 2.
    Peters MC, McLean ME (2001) Minimally invasive operative care. I. Minimal intervention and concepts for minimally invasive cavity preparations. J Adhes Dent 3(1):7–16PubMedGoogle Scholar
  3. 3.
    Ismail AI, Sohn W, Tellez M, Amaya A, Sen A, Hasson H, Pitts NB (2007) The International Caries Detection and Assessment System (ICDAS): an integrated system for measuring dental caries. Community Dent Oral Epidemiol 35(3):170–178CrossRefPubMedGoogle Scholar
  4. 4.
    Meyer-Lueckel H, Bitter K, Paris S (2012) Randomized controlled clinical trial on proximal caries infiltration: three-year follow-up. Caries Res 46(6):544–548CrossRefPubMedGoogle Scholar
  5. 5.
    Mejàre I, Axelsson S, Dahlén G, Espelid I, Norlund A, Tranæus S, Twetman S (2014) Caries risk assessment. A systematic review. Acta Odontol Scand 72(2):81–91CrossRefPubMedGoogle Scholar
  6. 6.
    Poole DF, Newman HN (1971) Dental plaque and oral health. Nature 234(5328):329–331CrossRefPubMedGoogle Scholar
  7. 7.
    Wolff D, Frese C, Maier-Kraus T, Krueger T, Wolff B (2013) Bacterial biofilm composition in caries and caries-free subjects. Caries Res 47(1):69–77CrossRefPubMedGoogle Scholar
  8. 8.
    Blaser M, Bork P, Fraser C, Knight R, Wang J (2013) The microbiome explored: recent insights and future challenges. Nat Rev Microbiol 11(3):213–217CrossRefPubMedGoogle Scholar
  9. 9.
    Tait E, Perry JD, Stanforth SP, Dean JR (2014) Identification of volatile organic compounds produced by bacteria using HS-SPME-GC-MS. J Chromatogr Sci 52(4):363–373CrossRefPubMedGoogle Scholar
  10. 10.
    Höckelmann C, Jüttner F (2004) Volatile organic compound (VOC) analysis and sources of limonene, cyclohexanone and straight chain aldehydes in axenic cultures of Calothrix and Plectonema. Water Sci Technol 49(9):47–54PubMedGoogle Scholar
  11. 11.
    Farag MA, Ryu CM, Sumner LW, Paré PW (2006) GC-MS SPME profiling of rhizobacterial volatiles reveals prospective inducers of growth promotion and induced systemic resistance in plants. Phytochemistry 67(20):2262–2268CrossRefPubMedGoogle Scholar
  12. 12.
    Peeters M (1998) Urea breath test: a diagnostic tool in the management of Helicobacter pylori-related gastrointestinal diseases. Acta Gastroenterol Belg 61(3):332–335PubMedGoogle Scholar
  13. 13.
    Smith AD, Cowan JO, Brassett KP, Herbison GP, Taylor DR (2005) Use of exhaled nitric oxide measurements to guide treatment in chronic asthma. N Engl J Med 352(21):2163–2173CrossRefPubMedGoogle Scholar
  14. 14.
    Scott-Thomas A, Epton M, Chambers S (2013) Validating a breath collection and analysis system for the new tuberculosis breath test. J Breath Res 7(3):037108CrossRefPubMedGoogle Scholar
  15. 15.
    Lemfack MC, Nickel J, Dunkel M, Preissner R, Piechulla B (2014) mVOC: a database of microbial volatiles. Nucleic Acids Res 42(Database issue):D744–D748PubMedCentralCrossRefPubMedGoogle Scholar
  16. 16.
    Blom D, Fabbri C, Connor EC, Schiestl FP, Klauser DR, Boller T, Eberl L, Weisskopf L (2011) Production of plant growth modulating volatiles is widespread among rhizosphere bacteria and strongly depends on culture conditions. Environ Microbiol 13(11):3047–3058CrossRefPubMedGoogle Scholar
  17. 17.
    Zehm S, Schweinitz S, Würzner R, Colvin HP, Rieder J (2012) Detection of Candida albicans by mass spectrometric fingerprinting. Curr Microbiol 64(3):271–275CrossRefPubMedGoogle Scholar
  18. 18.
    Bunge M, Araghipour N, Mikoviny T, Dunkl J, Schnitzhofer R, Hansel A, Schinner F, Wisthaler A, Margesin R, Märk TD (2008) On-line monitoring of microbial volatile metabolites by proton transfer reaction-mass spectrometry. Appl Environ Microbiol 74(7):2179–2186PubMedCentralCrossRefPubMedGoogle Scholar
  19. 19.
    Hunziker L, Bönisch D, Groenhagen U, Bailly A, Schulz S, Weisskopf L (2015) Pseudomonas strains naturally associated with potato plants produce volatiles with high potential for inhibition of Phytophthora infestans. Appl Environ Microbiol 81(3):821–830PubMedCentralCrossRefPubMedGoogle Scholar
  20. 20.
    Walsh K, Jones GJ, Dunstan RH (1998) Effect of high irradiance and iron on volatile odour compounds in the cyanobacterium Microcystis aeruginosa. Phytochemistry 49(5):1227–1239CrossRefPubMedGoogle Scholar
  21. 21.
    Kawai F (1995) Bacterial degradation of glycol ethers. Appl Microbiol Biotechnol 44(3-4):532–538CrossRefPubMedGoogle Scholar
  22. 22.
    Kleemann R, Meckenstock RU (2011) Anaerobic naphthalene degradation by Gram-positive, iron-reducing bacteria. FEMS Microbiol Ecol 78(3):488–496CrossRefPubMedGoogle Scholar
  23. 23.
    Kunz DA, Chapman PJ (1981) Catabolism of pseudocumene and 3-ethyltoluene by Pseudomonas putida (arvilla) mt-2: evidence for new functions of the TOL (pWWO) plasmid. J Bacteriol 146(1):179–191PubMedCentralPubMedGoogle Scholar
  24. 24.
    Leahy JG, Tracy KD, Eley MH (2003) Degradation of mixtures of aromatic and chloroaliphatic hydrocarbons by aromatic hydrocarbon-degrading bacteria. FEMS Microbiol Ecol 43(2):271–276CrossRefPubMedGoogle Scholar
  25. 25.
    Musat F, Galushko A, Jacob J, Widdel F, Kube M, Reinhardt R, Wilkes H, Schink B, Rabus R (2009) Anaerobic degradation of naphthalene and 2-methylnaphthalene by strains of marine sulfate-reducing bacteria. Environ Microbiol 11(1):209–219CrossRefPubMedGoogle Scholar
  26. 26.
    Sikkema J, de Bont JA (1993) Metabolism of tetralin (1,2,3,4-tetrahydronaphthalene) in Corynebacterium sp. strain C125. Appl Environ Microbiol 59(2):567–572PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Hertel
    • 1
  • R. Preissner
    • 2
  • B. Gillissen
    • 3
    • 4
  • A. M. Schmidt-Westhausen
    • 1
  • S. Paris
    • 5
  • S. Preissner
    • 5
    Email author
  1. 1.Department of Oral Medicine, Dental Radiology and Oral SurgeryCharité - Universitätsmedizin BerlinBerlinGermany
  2. 2.Structural Bioinformatics Group, Institute for PhysiologyCharité - Universitätsmedizin BerlinBerlinGermany
  3. 3.German Cancer Consortium (DKTK)HeidelbergGermany
  4. 4.Hematology, Oncology and Tumor ImmunologyCharité - Universitätsmedizin BerlinBerlinGermany
  5. 5.Department of Operative and Preventive DentistryCharité - Universitätsmedizin BerlinBerlinGermany

Personalised recommendations