Chronic infection phenotypes of Pseudomonas aeruginosa are associated with failure of eradication in children with cystic fibrosis

  • P. Vidya
  • L. Smith
  • T. Beaudoin
  • Y. C. W. Yau
  • S. Clark
  • B. Coburn
  • D. S. Guttman
  • D. M. Hwang
  • V. Waters
Original Article


Early eradication treatment with inhaled tobramycin is successful in the majority of children with cystic fibrosis (CF) with incident Pseudomonas aeruginosa infection. However, in 10–40 % of cases, eradication fails and the reasons for this are poorly understood. The purpose of this study was to determine whether specific microbial characteristics could explain eradication treatment failure. This was a cross-sectional study of CF patients (aged 0–18 years) with incident P. aeruginosa infection from 2011 to 2014 at the Hospital for Sick Children, Toronto, Canada. Phenotypic assays were done on all incident P. aeruginosa isolates, and eradicated and persistent isolates were compared using the Mann–Whitney test or the two-sided Chi-square test. A total of 46 children with CF had 51 incident P. aeruginosa infections. In 72 % (33/46) of the patients, eradication treatment was successful, while 28 % failed eradication therapy. Persistent isolates were less likely to be motile, with significantly less twitch motility (p = 0.001), were more likely to be mucoid (p = 0.002), and more likely to have a tobramycin minimum inhibitory concentration (MIC) ≥ 128 μg/mL (p = 0.02) compared to eradicated isolates. Although biofilm production was similar, there was a trend towards more persistent isolates with deletions in quorum-sensing genes compared with eradicated isolates (p = 0.06). Initial acquisition of P. aeruginosa with characteristics of chronic infection is associated with failure of eradication treatment.


Cystic Fibrosis Tobramycin Cystic Fibrosis Patient Eradication Rate Protease Production 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the US Cystic Fibrosis Foundation, Canadian Foundation for Infectious Diseases, and The Lung Association of Ontario. Part of this work was presented at the North American Cystic Fibrosis Conference in Atlanta, Georgia, October 2014.

Conflict of interest

None of the authors declare a conflict of interest.

Supplementary material

10096_2015_2509_Fig2_ESM.jpg (330 kb)

(JPEG 329 kb)

10096_2015_2509_MOESM1_ESM.tif (681 kb)
High resolution image (TIFF 680 kb)
10096_2015_2509_Fig3_ESM.jpg (352 kb)

(JPEG 351 kb)

10096_2015_2509_MOESM2_ESM.tif (430 kb)
High resolution image (TIFF 429 kb)
10096_2015_2509_Fig4_ESM.jpg (77 kb)

(JPEG 76 kb)

10096_2015_2509_MOESM3_ESM.tif (100 kb)
High resolution image (TIFF 99 kb)
10096_2015_2509_MOESM4_ESM.doc (36 kb)
ESM 4 (DOC 35 kb)
10096_2015_2509_MOESM5_ESM.doc (34 kb)
ESM 5 (DOC 33 kb)


  1. 1.
    Gibson RL, Burns JL, Ramsey BW (2003) Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168(8):918–951PubMedCrossRefGoogle Scholar
  2. 2.
    Pamukcu A, Bush A, Buchdahl R (1995) Effects of Pseudomonas aeruginosa colonization on lung function and anthropometric variables in children with cystic fibrosis. Pediatr Pulmonol 19(1):10–15PubMedCrossRefGoogle Scholar
  3. 3.
    Henry RL, Mellis CM, Petrovic L (1992) Mucoid Pseudomonas aeruginosa is a marker of poor survival in cystic fibrosis. Pediatr Pulmonol 12(3):158–161PubMedCrossRefGoogle Scholar
  4. 4.
    Schelstraete P, Haerynck F, Van Daele S, Deseyne S, De Baets F (2013) Eradication therapy for Pseudomonas aeruginosa colonization episodes in cystic fibrosis patients not chronically colonized by P. aeruginosa. J Cyst Fibros 12(1):1–8PubMedCrossRefGoogle Scholar
  5. 5.
    Levy H, Kalish LA, Cannon CL et al (2008) Predictors of mucoid Pseudomonas colonization in cystic fibrosis patients. Pediatr Pulmonol 43(5):463–471PubMedPubMedCentralCrossRefGoogle Scholar
  6. 6.
    Mayer-Hamblett N, Kronmal RA, Gibson RL et al (2012) Initial Pseudomonas aeruginosa treatment failure is associated with exacerbations in cystic fibrosis. Pediatr Pulmonol 47(2):125–134PubMedPubMedCentralCrossRefGoogle Scholar
  7. 7.
    Douglas TA, Brennan S, Gard S et al (2009) Acquisition and eradication of P. aeruginosa in young children with cystic fibrosis. Eur Respir J 33(2):305–311PubMedCrossRefGoogle Scholar
  8. 8.
    Manos J, Hu H, Rose BR et al (2013) Virulence factor expression patterns in Pseudomonas aeruginosa strains from infants with cystic fibrosis. Eur J Clin Microbiol Infect Dis 32(12):1583–1592PubMedCrossRefGoogle Scholar
  9. 9.
    Tramper-Stranders GA, van der Ent CK, Molin S et al (2012) Initial Pseudomonas aeruginosa infection in patients with cystic fibrosis: characteristics of eradicated and persistent isolates. Clin Microbiol Infect 18(6):567–574PubMedCrossRefGoogle Scholar
  10. 10.
    Mayer-Hamblett N, Ramsey BW, Kulasekara HD et al (2014) Pseudomonas aeruginosa phenotypes associated with eradication failure in children with cystic fibrosis. Clin Infect Dis 59(5):624–631PubMedPubMedCentralCrossRefGoogle Scholar
  11. 11.
    Kerem E, Reisman J, Corey M, Canny GJ, Levison H (1992) Prediction of mortality in patients with cystic fibrosis. N Engl J Med 326(18):1187–1191PubMedCrossRefGoogle Scholar
  12. 12.
    Stanojevic S, Waters V, Mathew JL, Taylor L, Ratjen F (2014) Effectiveness of inhaled tobramycin in eradicating Pseudomonas aeruginosa in children with cystic fibrosis. J Cyst Fibros 13(2):172–178PubMedCrossRefGoogle Scholar
  13. 13.
    Ratjen F, Munck A, Kho P, Angyalosi G; ELITE Study Group (2010) Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax 65(4):286–291PubMedCrossRefGoogle Scholar
  14. 14.
    Treggiari MM, Retsch-Bogart G, Mayer-Hamblett N et al (2011) Comparative efficacy and safety of 4 randomized regimens to treat early Pseudomonas aeruginosa infection in children with cystic fibrosis. Arch Pediatr Adolesc Med 165(9):847–856PubMedPubMedCentralCrossRefGoogle Scholar
  15. 15.
    de la Fuente-Núñez C, Korolik V, Bains M et al (2012) Inhibition of bacterial biofilm formation and swarming motility by a small synthetic cationic peptide. Antimicrob Agents Chemother 56(5):2696–2704PubMedPubMedCentralCrossRefGoogle Scholar
  16. 16.
    Sokol PA, Ohman DE, Iglewski BH (1979) A more sensitive plate assay for detection of protease production by Pseudomonas aeruginosa. J Clin Microbiol 9(4):538–540PubMedPubMedCentralGoogle Scholar
  17. 17.
    Zlosnik JE, Hird TJ, Fraenkel MC, Moreira LM, Henry DA, Speert DP (2008) Differential mucoid exopolysaccharide production by members of the Burkholderia cepacia complex. J Clin Microbiol 46(4):1470–1473PubMedPubMedCentralCrossRefGoogle Scholar
  18. 18.
    O’Toole GA (2011) Microtiter dish biofilm formation assay. J Vis Exp (47). pii: 2437Google Scholar
  19. 19.
    Clinical and Laboratory Standards Institute (CLSI) (2012) Performance standards for antimicrobial susceptibility testing; Twenty-second informational supplement. CLSI document M100-S22. CLSI, Wayne, PAGoogle Scholar
  20. 20.
    Dekimpe V, Déziel E (2009) Revisiting the quorum-sensing hierarchy in Pseudomonas aeruginosa: the transcriptional regulator RhlR regulates LasR-specific factors. Microbiology 155(Pt 3):712–723PubMedCrossRefGoogle Scholar
  21. 21.
    Schaber JA, Carty NL, McDonald NA et al (2004) Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53(Pt 9):841–853PubMedCrossRefGoogle Scholar
  22. 22.
    Hogardt M, Heesemann J (2010) Adaptation of Pseudomonas aeruginosa during persistence in the cystic fibrosis lung. Int J Med Microbiol 300(8):557–562PubMedCrossRefGoogle Scholar
  23. 23.
    Ranganathan SC, Skoric B, Ramsay KA et al (2013) Geographical differences in first acquisition of Pseudomonas aeruginosa in cystic fibrosis. Ann Am Thorac Soc 10(2):108–114PubMedCrossRefGoogle Scholar
  24. 24.
    Kidd TJ, Ritchie SR, Ramsay KA, Grimwood K, Bell SC, Rainey PB (2012) Pseudomonas aeruginosa exhibits frequent recombination, but only a limited association between genotype and ecological setting. PLoS One 7(9):e44199PubMedPubMedCentralCrossRefGoogle Scholar
  25. 25.
    Kosorok MR, Jalaluddin M, Farrell PM et al (1998) Comprehensive analysis of risk factors for acquisition of Pseudomonas aeruginosa in young children with cystic fibrosis. Pediatr Pulmonol 26(2):81–88PubMedCrossRefGoogle Scholar
  26. 26.
    Mayer-Hamblett N, Kloster M, Rosenfeld M et al (2015) Impact of sustained eradication of new Pseudomonas aeruginosa infection on long-term outcomes in cystic fibrosis. Clin Infect Dis 61(5):707–715PubMedCrossRefGoogle Scholar
  27. 27.
    Li Z, Kosorok MR, Farrell PM et al (2005) Longitudinal development of mucoid Pseudomonas aeruginosa infection and lung disease progression in children with cystic fibrosis. JAMA 293(5):581–588PubMedCrossRefGoogle Scholar
  28. 28.
    Chmiel JF, Aksamit TR, Chotirmall SH et al (2014) Antibiotic management of lung infections in cystic fibrosis. I. The microbiome, methicillin-resistant Staphylococcus aureus, gram-negative bacteria, and multiple infections. Ann Am Thorac Soc 11(7):1120–1129PubMedCrossRefGoogle Scholar
  29. 29.
    Guttenplan SB, Kearns DB (2013) Regulation of flagellar motility during biofilm formation. FEMS Microbiol Rev 37(6):849–871PubMedPubMedCentralCrossRefGoogle Scholar
  30. 30.
    Carfartan G, Gerardin P, Turck D, Husson MO (2004) Effect of subinhibitory concentrations of azithromycin on adherence of Pseudomonas aeruginosa to bronchial mucins collected from cystic fibrosis patients. J Antimicrob Chemother 53(4):686–688PubMedCrossRefGoogle Scholar
  31. 31.
    Bjarnsholt T, Jensen PØ, Jakobsen TH et al (2010) Quorum sensing and virulence of Pseudomonas aeruginosa during lung infection of cystic fibrosis patients. PLoS One 5(4):e10115PubMedPubMedCentralCrossRefGoogle Scholar
  32. 32.
    D’Argenio DA, Wu M, Hoffman LR et al (2007) Growth phenotypes of Pseudomonas aeruginosa lasR mutants adapted to the airways of cystic fibrosis patients. Mol Microbiol 64(2):512–533PubMedPubMedCentralCrossRefGoogle Scholar
  33. 33.
    Wang S, Yu S, Zhang Z et al (2014) Coordination of swarming motility, biosurfactant synthesis, and biofilm matrix exopolysaccharide production in Pseudomonas aeruginosa. Appl Environ Microbiol 80(21):6724–6732PubMedPubMedCentralCrossRefGoogle Scholar
  34. 34.
    Colvin KM, Irie Y, Tart CS et al (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14(8):1913–1928PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • P. Vidya
    • 1
    • 2
  • L. Smith
    • 2
  • T. Beaudoin
    • 2
  • Y. C. W. Yau
    • 1
    • 3
  • S. Clark
    • 1
    • 4
    • 5
  • B. Coburn
    • 6
  • D. S. Guttman
    • 6
    • 7
  • D. M. Hwang
    • 1
    • 4
    • 5
  • V. Waters
    • 1
    • 2
  1. 1.Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoCanada
  2. 2.Division of Infectious Diseases, Department of PediatricsThe Hospital for Sick Children, University of TorontoTorontoCanada
  3. 3.Division of Microbiology, Department of Pediatric Laboratory MedicineThe Hospital for Sick Children, University of TorontoTorontoCanada
  4. 4.Latner Thoracic Surgery Research LaboratoriesUniversity Health NetworkTorontoCanada
  5. 5.Laboratory Medicine ProgramUniversity Health NetworkTorontoCanada
  6. 6.Department of Cell and Systems BiologyUniversity of TorontoTorontoCanada
  7. 7.Centre for the Analysis of Genome Evolution and FunctionUniversity of TorontoTorontoCanada

Personalised recommendations