Advertisement

Long-term persistence of a multi-resistant methicillin-susceptible Staphylococcus aureus (MR-MSSA) clone at a university hospital in southeast Sweden, without further transmission within the region

  • M. Lindqvist
  • B. Isaksson
  • J. Swanberg
  • R. Skov
  • A. R. Larsen
  • J. Larsen
  • A. Petersen
  • A. HällgrenEmail author
Article

Abstract

The objective of this study was to characterise isolates of methicillin-susceptible Staphylococcus aureus (MSSA) with resistance to clindamycin and/or tobramycin in southeast Sweden, including the previously described ECT-R clone (t002) found in Östergötland County, focusing on clonal relatedness, virulence determinants and existence of staphylococcal cassette chromosome (SCC) mec remnants. MSSA isolates with resistance to clindamycin and/or tobramycin were collected from the three county councils in southeast Sweden and investigated with spa typing, polymerase chain reaction (PCR) targeting the SCCmec right extremity junction (MREJ) and DNA microarray technology. The 98 isolates were divided into 40 spa types, and by microarray clustered in 17 multi-locus sequence typing (MLST) clonal complexes (MLST-CCs). All isolates with combined resistance to clindamycin and tobramycin (n = 12) from Östergötland County and two additional isolates (clindamycin-R) were designated as spa type t002, MREJ type ii and were clustered in CC5, together with a representative isolate of the ECT-R clone, indicating the clone’s persistence. These isolates also carried several genes encoding exotoxins, Q9XB68-dcs and qacC. Of the isolates in CC15, 83 % (25/30) were tobramycin-resistant and were designated spa type t084. Of these, 68 % (17/25) were isolated from new-borns in all three counties. The persistence of the ECT-R clone in Östergötland County, although not found in any other county in the region, carrying certain virulence factors that possibly enhance its survival in the hospital environment, highlights the fact that basic hygiene guidelines must be maintained even when MRSA prevalence is low.

Keywords

Clindamycin Tobramycin Moxifloxacin County Council SCCmec Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We are grateful for all the help from the people in the participating clinical microbiology laboratories, and especially Annika Wistedt, Kalmar County Hospital and Lennart E. Nilsson and Anita Johansson, Linköping University and Linköping University Hospital. This study was financially supported by the Östergötland County Council, Sweden, the Medical Research Council of Southeast Sweden (FORSS) and the Scandinavian Society for Antimicrobial Chemotherapy (SSAC)

Conflict of interest

The authors have no conflicts of interest to be declared.

Ethical statement

This study was approved by the Regional Ethical Review Board in Linköping, Sweden (M164-09), who judged that there was no need for informed consent to be obtained is this study.

References

  1. 1.
    Grundmann H, Aanensen DM, van den Wijngaard CC, Spratt BG, Harmsen D, Friedrich AW; European Staphylococcal Reference Laboratory Working Group (2010) Geographic distribution of Staphylococcus aureus causing invasive infections in Europe: a molecular-epidemiological analysis. PLoS Med 7(1):e1000215. doi: 10.1371/journal.pmed.1000215 PubMedCentralPubMedCrossRefGoogle Scholar
  2. 2.
    Wiese-Posselt M, Heuck D, Draeger A, Mielke M, Witte W, Ammon A, Hamouda O (2007) Successful termination of a furunculosis outbreak due to lukS-lukF-positive, methicillin-susceptible Staphylococcus aureus in a German village by stringent decolonization, 2002–2005. Clin Infect Dis 44(11):e88–e95. doi: 10.1086/517503 PubMedCrossRefGoogle Scholar
  3. 3.
    Grub C, Holberg-Petersen M, Medbø S, Andersen BM, Syversen G, Melby KK (2010) A multidrug-resistant, methicillin-susceptible strain of Staphylococcus aureus from a neonatal intensive care unit in Oslo, Norway. Scand J Infect Dis 42(2):148–151. doi: 10.3109/00365540903334401 PubMedCrossRefGoogle Scholar
  4. 4.
    Boers SA, van Ess I, Euser SM, Jansen R, Tempelman FR, Diederen BM (2011) An outbreak of a multiresistant methicillin-susceptible Staphylococcus aureus (MR-MSSA) strain in a burn centre: the importance of routine molecular typing. Burns 37(5):808–813PubMedCrossRefGoogle Scholar
  5. 5.
    Gasch O, Hornero A, Domínguez MA, Fernández A, Suárez C, Gómez S, Camoez M, Linares J, Ariza J, Pujol M (2012) Methicillin-susceptible Staphylococcus aureus clone related to the early pandemic phage type 80/81 causing an outbreak among residents of three occupational centres in Barcelona, Spain. Clin Microbiol Infect 18(7):662–667. doi: 10.1111/j.1469-0691.2011.03663.x PubMedCrossRefGoogle Scholar
  6. 6.
    Lindqvist M, Isaksson B, Samuelsson A, Nilsson LE, Hallgren A (2009) A clonal outbreak of methicillin-susceptible Staphylococcus aureus with concomitant resistance to erythromycin, clindamycin and tobramycin in a Swedish county. Scand J Infect Dis 41(5):324–333. doi: 10.1080/00365540902801202 PubMedCrossRefGoogle Scholar
  7. 7.
    Lindqvist M, Isaksson B, Grub C, Jonassen TØ, Hällgren A (2012) Detection and characterisation of SCCmec remnants in multiresistant methicillin-susceptible Staphylococcus aureus causing a clonal outbreak in a Swedish county. Eur J Clin Microbiol Infect Dis 31(2):141–147. doi: 10.1007/s10096-011-1286-y PubMedCrossRefGoogle Scholar
  8. 8.
    Huang SS, Avery TR, Song Y, Elkins KR, Nguyen CC, Nutter SK, Nafday AA, Condon CJ, Chang MT, Chrest D, Boos J, Bobashev G, Wheaton W, Frank SA, Platt R, Lipsitch M, Bush RM, Eubank S, Burke DS, Lee BY (2010) Quantifying interhospital patient sharing as a mechanism for infectious disease spread. Infect Control Hosp Epidemiol 31(11):1160–1169. doi: 10.1086/656747 PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Donker T, Wallinga J, Slack R, Grundmann H (2012) Hospital networks and the dispersal of hospital-acquired pathogens by patient transfer. PLoS One 7(4):e35002. doi: 10.1371/journal.pone.0035002 PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Donker T, Wallinga J, Grundmann H (2014) Dispersal of antibiotic-resistant high-risk clones by hospital networks: changing the patient direction can make all the difference. J Hosp Infect 86(1):34–41. doi: 10.1016/j.jhin.2013.06.021 PubMedCrossRefGoogle Scholar
  11. 11.
    Fiebelkorn KR, Crawford SA, McElmeel ML, Jorgensen JH (2003) Practical disk diffusion method for detection of inducible clindamycin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol 41(10):4740–4744PubMedCentralPubMedCrossRefGoogle Scholar
  12. 12.
    Monecke S, Jatzwauk L, Weber S, Slickers P, Ehricht R (2008) DNA microarray-based genotyping of methicillin-resistant Staphylococcus aureus strains from Eastern Saxony. Clin Microbiol Infect 14(6):534–545. doi: 10.1111/j.1469-0691.2008.01986.x PubMedCrossRefGoogle Scholar
  13. 13.
    Monecke S, Slickers P, Ehricht R (2008) Assignment of Staphylococcus aureus isolates to clonal complexes based on microarray analysis and pattern recognition. FEMS Immunol Med Microbiol 53(2):237–251. doi: 10.1111/j.1574-695X.2008.00426.x PubMedCrossRefGoogle Scholar
  14. 14.
    Huletsky A, Giroux R, Rossbach V, Gagnon M, Vaillancourt M, Bernier M, Gagnon F, Truchon K, Bastien M, Picard FJ, van Belkum A, Ouellette M, Roy PH, Bergeron MG (2004) New real-time PCR assay for rapid detection of methicillin-resistant Staphylococcus aureus directly from specimens containing a mixture of staphylococci. J Clin Microbiol 42(5):1875–1884PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Shore AC, Rossney AS, O’Connell B, Herra CM, Sullivan DJ, Humphreys H, Coleman DC (2008) Detection of staphylococcal cassette chromosome mec-associated DNA segments in multiresistant methicillin-susceptible Staphylococcus aureus (MSSA) and identification of Staphylococcus epidermidis ccrAB4 in both methicillin-resistant S. aureus and MSSA. Antimicrob Agents Chemother 52(12):4407–4419. doi: 10.1128/AAC.00447-08 PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Monecke S, Coombs G, Shore AC, Coleman DC, Akpaka P, Borg M, Chow H, Ip M, Jatzwauk L, Jonas D, Kadlec K, Kearns A, Laurent F, O’Brien FG, Pearson J, Ruppelt A, Schwarz S, Scicluna E, Slickers P, Tan HL, Weber S, Ehricht R (2011) A field guide to pandemic, epidemic and sporadic clones of methicillin-resistant Staphylococcus aureus. PLoS One 6(4):e17936. doi: 10.1371/journal.pone.0017936 PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Smith K, Gemmell CG, Hunter IS (2008) The association between biocide tolerance and the presence or absence of qac genes among hospital-acquired and community-acquired MRSA isolates. J Antimicrob Chemother 61(1):78–84. doi: 10.1093/jac/dkm395 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  • M. Lindqvist
    • 1
    • 2
  • B. Isaksson
    • 1
  • J. Swanberg
    • 3
  • R. Skov
    • 4
  • A. R. Larsen
    • 4
  • J. Larsen
    • 4
  • A. Petersen
    • 4
  • A. Hällgren
    • 5
    Email author
  1. 1.Department of Infection ControlCounty Council of ÖstergötlandLinköpingSweden
  2. 2.Division of Clinical Microbiology, Department of Clinical and Experimental Medicine, Faculty of Health SciencesLinköping UniversityLinköpingSweden
  3. 3.Clinical Microbiology LaboratoryRyhov HospitalJönköpingSweden
  4. 4.Department of Microbiology and Infection ControlStatens Serum InstitutCopenhagenDenmark
  5. 5.Division of Infectious Diseases, Department of Clinical and Experimental Medicine, Faculty of Health SciencesLinköping UniversityLinköpingSweden

Personalised recommendations