Biofilm-specific antibiotic tolerance and resistance

  • I. OlsenEmail author


Biofilms are heterogeneous structures composed of bacterial cells surrounded by a matrix and attached to solid surfaces. The bacteria here are 100 to 1,000 times more tolerant to antimicrobials than corresponding planktonic cells. Biofilms can be difficult to eradicate when they cause biofilm-related diseases, e.g., implant infections, cystic fibrosis, urinary tract infections, and periodontal diseases. A number of phenotypic features of the biofilm can be involved in biofilm-specific tolerance and resistance. Little is known about the molecular mechanisms involved. The current review deals with both phenotypic and molecular mechanisms of biofilm-specific antibiotic tolerance and resistance.


Antibiotic Resistance Horizontal Gene Transfer Colistin Efflux Pump Planktonic Cell 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The author acknowledges Mr. Steinar Stølen for preparing Fig. 1. Funding was through a grant from the European Commission (FP7-HEALTH-306029 ‘TRIGGER’).

Conflict of interest

The author has no conflict of interest.


  1. 1.
    Flemming HC, Wingender J (2010) The biofilm matrix. Nat Rev Microbiol 8(9):623–633PubMedGoogle Scholar
  2. 2.
    Ceri H, Olson ME, Stremick C, Read RR, Morck D, Buret A (1999) The Calgary Biofilm Device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37(6):1771–1776PubMedCentralPubMedGoogle Scholar
  3. 3.
    Walters MC 3rd, Roe F, Bugnicourt A, Franklin MJ, Stewart PS (2003) Contributions of antibiotic penetration, oxygen limitation, and low metabolic activity to tolerance of Pseudomonas aeruginosa biofilms to ciprofloxacin and tobramycin. Antimicrob Agents Chemother 47(1):317–323CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Chiang WC, Nilsson M, Jensen PØ, Høiby N, Nielsen TE, Givskov M, Tolker-Nielsen T (2013) Extracellular DNA shields against aminoglycosides in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 57(5):2352–2361. doi: 10.1128/AAC.00001-13 CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Lazăr V, Chifiriuc MC (2010) Medical significance and new therapeutical strategies for biofilm associated infections. Roum Arch Microbiol Immunol 69(3):125–138PubMedGoogle Scholar
  6. 6.
    de Beer D, Stoodley P, Lewandowski Z (1997) Measurement of local diffusion coefficients in biofilms by microinjection and confocal microscopy. Biotechnol Bioeng 53(2):151–158CrossRefPubMedGoogle Scholar
  7. 7.
    Fux CA, Wilson S, Stoodley P (2004) Detachment characteristics and oxacillin resistance of Staphyloccocus aureus biofilm emboli in an in vitro catheter infection model. J Bacteriol 186(14):4486–4491CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Hall-Stoodley L, Stoodley P (2009) Evolving concepts in biofilm infections. Cell Microbiol 11(7):1034–1043. doi: 10.1111/j.1462-5822.2009.01323.x CrossRefPubMedGoogle Scholar
  9. 9.
    Ciofu O, Tolker-Nielsen T, Jensen PØ, Wang H, Høiby N (2014) Antimicrobial resistance, respiratory tract infections and role of biofilms in lung infections in cystic fibrosis patients. Adv Drug Deliv Rev. doi: 10.1016/j.addr.2014.11.017 PubMedGoogle Scholar
  10. 10.
    Werner E, Roe F, Bugnicourt A, Franklin MJ, Heydorn A, Molin S, Pitts B, Stewart PS (2004) Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70(10):6188–6196CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Pamp SJ, Gjermansen M, Johansen HK, Tolker-Nielsen T (2008) Tolerance to the antimicrobial peptide colistin in Pseudomonas aeruginosa biofilms is linked to metabolically active cells, and depends on the pmr and mexAB-oprM genes. Mol Microbiol 68(1):223–240. doi: 10.1111/j.1365-2958.2008.06152.x CrossRefPubMedGoogle Scholar
  12. 12.
    Brown MR, Allison DG, Gilbert P (1988) Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J Antimicrob Chemother 22(6):777–780CrossRefPubMedGoogle Scholar
  13. 13.
    Xu KD, McFeters GA, Stewart PS (2000) Biofilm resistance to antimicrobial agents. Microbiology 146(Pt 3):547–549PubMedGoogle Scholar
  14. 14.
    Bernier SP, Lebeaux D, DeFrancesco AS, Valomon A, Soubigou G, Coppée JY, Ghigo JM, Beloin C (2013) Starvation, together with the SOS response, mediates high biofilm-specific tolerance to the fluoroquinolone ofloxacin. PLoS Genet 9(1):e1003144. doi: 10.1371/journal.pgen.1003144 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Schaible B, Taylor CT, Schaffer K (2012) Hypoxia increases antibiotic resistance in Pseudomonas aeruginosa through altering the composition of multidrug efflux pumps. Antimicrob Agents Chemother 56(4):2114–2118. doi: 10.1128/AAC.05574-11 CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Borriello G, Werner E, Roe F, Kim AM, Ehrlich GD, Stewart PS (2004) Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob Agents Chemother 48(7):2659–2664CrossRefPubMedCentralPubMedGoogle Scholar
  17. 17.
    Kindrachuk J, Scruten E, Attah-Poku S, Bell K, Potter A, Babiuk LA, Griebel PJ, Napper S (2011) Stability, toxicity, and biological activity of host defense peptide BMAP28 and its inversed and retro-inversed isomers. Biopolymers 96(1):14–24. doi: 10.1002/bip.21441 CrossRefPubMedGoogle Scholar
  18. 18.
    Taylor PK, Yeung AT, Hancock RE (2014) Antibiotic resistance in Pseudomonas aeruginosa biofilms: towards the development of novel anti-biofilm therapies. J Biotechnol 191:121–130. doi: 10.1016/j.jbiotec.2014.09.003 CrossRefPubMedGoogle Scholar
  19. 19.
    Jolivet-Gougeon A, Bonnaure-Mallet M (2014) Biofilms as a mechanism of bacterial resistance. Drug Discov Today Technol 11:49–56. doi: 10.1016/j.ddtec.2014.02.003 CrossRefPubMedGoogle Scholar
  20. 20.
    Lewis K (2012) Persister cells: molecular mechanisms related to antibiotic tolerance. In: Coates ARM (ed) Antibiotic resistance. Handbook of experimental pharmacology, vol 211. Springer, Berlin Heidelberg, pp 121–133. doi: 10.1007/978-3-642-28951-4_8 CrossRefGoogle Scholar
  21. 21.
    Hu Y, Coates A (2012) Nonmultiplying bacteria are profoundly tolerant to antibiotics. In: Coates ARM (ed) Antibiotic resistance. Handbook of experimental pharmacology, vol 211. Springer, Berlin Heidelberg, pp 99–119. doi: 10.1007/978-3-642-28951-4_7 CrossRefGoogle Scholar
  22. 22.
    Harrison JJ, Turner RJ, Ceri H (2005) Persister cells, the biofilm matrix and tolerance to metal cations in biofilm and planktonic Pseudomonas aeruginosa. Environ Microbiol 7(7):981–994CrossRefPubMedGoogle Scholar
  23. 23.
    Harrison JJ, Ceri H, Roper NJ, Badry EA, Sproule KM, Turner RJ (2005) Persister cells mediate tolerance to metal oxyanions in Escherichia coli. Microbiology 151(Pt 10):3181–3195CrossRefPubMedGoogle Scholar
  24. 24.
    LaFleur MD, Qi Q, Lewis K (2010) Patients with long-term oral carriage harbor high-persister mutants of Candida albicans. Antimicrob Agents Chemother 54(1):39–44CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Spoering AL, Lewis K (2001) Biofilms and planktonic cells of Pseudomonas aeruginosa have similar resistance to killing by antimicrobials. J Bacteriol 183(23):6746–6751CrossRefPubMedCentralPubMedGoogle Scholar
  26. 26.
    Conlon BP (2014) Staphylococcus aureus chronic and relapsing infections: evidence of a role for persister cells: an investigation of persister cells, their formation and their role in S. aureus disease. Bioessays 36(10):991–996. doi: 10.1002/bies.201400080 CrossRefPubMedGoogle Scholar
  27. 27.
    Conlon BP, Nakayasu ES, Fleck LE, LaFleur MD, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K (2013) Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature 503(7476):365–370. doi: 10.1038/nature12790 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Brötz-Oesterhelt H, Beyer D, Kroll HP, Endermann R, Ladel C, Schroeder W, Hinzen B, Raddatz S, Paulsen H, Henninger K, Bandow JE, Sahl HG, Labischinski H (2005) Dysregulation of bacterial proteolytic machinery by a new class of antibiotics. Nat Med 11(10):1082–1087CrossRefPubMedGoogle Scholar
  29. 29.
    Kirstein J, Hoffmann A, Lilie H, Schmidt R, Rübsamen-Waigmann H, Brötz-Oesterhelt H, Mogk A, Turgay K (2009) The antibiotic ADEP reprogrammes ClpP, switching it from a regulated to an uncontrolled protease. EMBO Mol Med 1(1):37–49. doi: 10.1002/emmm.200900002 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Dörr T, Vulić M, Lewis K (2010) Ciprofloxacin causes persister formation by inducing the TisB toxin in Escherichia coli. PLoS Biol 8(2):e1000317. doi: 10.1371/journal.pbio.1000317 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Kim S-M, Kim HC, Lee S-WS (2011) Characterization of antibiotic resistance determinants in oral biofilms. J Microbiol 49(4):595–602CrossRefPubMedGoogle Scholar
  32. 32.
    Walker CB, Tyler KZ, Low SB, King CJ (1987) Penicillin-degrading enzymes in sites associated with adult periodontitis. Oral Microbiol Immunol 2(3):129–131CrossRefPubMedGoogle Scholar
  33. 33.
    Handal T, Olsen I, Walker CB, Caugant DA (2005) Detection and characterization of beta-lactamase genes in subgingival bacteria from patients with refractory periodontitis. FEMS Microbiol Lett 242(2):319–324CrossRefPubMedGoogle Scholar
  34. 34.
    Handal T, Olsen I, Walker CB, Caugant DA (2004) Beta-lactamase production and antimicrobial susceptibility of subgingival bacteria from refractory periodontitis. Oral Microbiol Immunol 19(5):303–308CrossRefPubMedGoogle Scholar
  35. 35.
    Handal T, Caugant DA, Olsen I (2003) Antibiotic resistance in bacteria isolated from subgingival plaque in a Norwegian population with refractory marginal periodontitis. Antimicrob Agents Chemother 47(4):1443–1446CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Ciofu O, Høiby N (2007) Chapter 10. Cystic fibrosis: coping with resistance. In: Kluytmans JAJW, Diederen BMW (eds) Antibiotic policies. Fighting resistance. Springer, New York, pp 149–174Google Scholar
  37. 37.
    Bagge N, Schuster M, Hentzer M, Ciofu O, Givskov M, Greenberg EP, Høiby N (2004) Pseudomonas aeruginosa biofilms exposed to imipenem exhibit changes in global gene expression and β-lactamase and alginate production. Antimicrob Agents Chemother 48(4):1175–1187CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Bagge N, Hentzer M, Andersen JB, Ciofu O, Givskov M, Høiby N (2004) Dynamics and spatial distribution of β-lactamase expression in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 48(4):1168–1174CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Dibdin GH, Assinder SJ, Nichols WW, Lambert PA (1996) Mathematical model of β-lactam penetration into a biofilm of Pseudomonas aeruginosa while undergoing simultaneous inactivation by released β-lactamases. J Antimicrob Chemother 38(5):757–769CrossRefPubMedGoogle Scholar
  40. 40.
    Hengzhuang W, Ciofu O, Yang L, Wu H, Song Z, Oliver A, Høiby N (2013) High β-lactamase levels change the pharmacodynamics of β-lactam antibiotics in Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 57(1):196–204CrossRefPubMedCentralPubMedGoogle Scholar
  41. 41.
    Klausen M, Aaes-Jørgensen A, Molin S, Tolker-Nielsen T (2003) Involvement of bacterial migration in the development of complex multicellular structures in Pseudomonas aeruginosa biofilms. Mol Microbiol 50(1):61–68CrossRefPubMedGoogle Scholar
  42. 42.
    Haagensen JA, Klausen M, Ernst RK, Miller SI, Folkesson A, Tolker-Nielsen T, Molin S (2007) Differentiation and distribution of colistin- and sodium dodecyl sulfate-tolerant cells in Pseudomonas aeruginosa biofilms. J Bacteriol 189(1):28–37CrossRefPubMedCentralPubMedGoogle Scholar
  43. 43.
    Mah T-F (2012) Biofilm-specific antibiotic resistance. Future Microbiol 7(9):1061–1072CrossRefPubMedGoogle Scholar
  44. 44.
    Van Acker H, Van Dijck P, Coenye T (2014) Molecular mechanisms of antimicrobial tolerance and resistance in bacterial and fungal biofilms. Trends Microbiol 22(6):326–333CrossRefPubMedGoogle Scholar
  45. 45.
    Colvin KM, Irie Y, Tart CS, Urbano R, Whitney JC, Ryder C, Howell PL, Wozniak DJ, Parsek MR (2012) The Pel and Psl polysaccharides provide Pseudomonas aeruginosa structural redundancy within the biofilm matrix. Environ Microbiol 14(8):1913–1928CrossRefPubMedGoogle Scholar
  46. 46.
    Jefferson KK, Goldmann DA, Pier GB (2005) Use of confocal microscopy to analyze the rate of vancomycin penetration through Staphylococcus aureus biofilms. Antimicrob Agents Chemother 49(6):2467–2473CrossRefPubMedCentralPubMedGoogle Scholar
  47. 47.
    Mulcahy H, Charron-Mazenod L, Lewenza S (2008) Extracellular DNA chelates cations and induces antibiotic resistance in Pseudomonas aeruginosa biofilms. PLoS Pathog 4(11):e1000213CrossRefPubMedCentralPubMedGoogle Scholar
  48. 48.
    Nicas TI, Hancock RE (1980) Outer membrane protein H1 of Pseudomonas aeruginosa: involvement in adaptive and mutational resistance to ethylenediaminetetraacetate, polymyxin B, and gentamicin. J Bacteriol 143(2):872–878PubMedCentralPubMedGoogle Scholar
  49. 49.
    Southey-Pillig CJ, Davies DG, Sauer K (2005) Characterization of temporal protein production in Pseudomonas aeruginosa biofilms. J Bacteriol 187(23):8114–8126CrossRefPubMedCentralPubMedGoogle Scholar
  50. 50.
    Williamson KS, Richards LA, Perez-Osorio AC, Pitts B, McInnerney K, Stewart PS, Franklin MJ (2012) Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J Bacteriol 194(8):2062–2073CrossRefPubMedCentralPubMedGoogle Scholar
  51. 51.
    Ito A, Taniuchi A, May T, Kawata K, Okabe S (2009) Increased antibiotic resistance of Escherichia coli in mature biofilms. Appl Environ Microbiol 75(12):4093–4100CrossRefPubMedCentralPubMedGoogle Scholar
  52. 52.
    Lai S, Tremblay J, Déziel E (2009) Swarming motility: a multicellular behaviour conferring antimicrobial resistance. Environ Microbiol 11(1):126–136CrossRefPubMedGoogle Scholar
  53. 53.
    Kaplan JB (2011) Antibiotic-induced biofilm formation. Int J Artif Organs 34(9):737–751CrossRefPubMedGoogle Scholar
  54. 54.
    Jørgensen KM, Wassermann T, Jensen PØ, Hengzuang W, Molin S, Høiby N, Ciofu O (2013) Sublethal ciprofloxacin treatment leads to rapid development of high-level ciprofloxacin resistance during long-term experimental evolution of Pseudomonas aeruginosa. Antimicrob Agents Chemother 57(9):4215–4221. doi: 10.1128/AAC.00493-13 CrossRefPubMedCentralPubMedGoogle Scholar
  55. 55.
    Driffield K, Miller K, Bostock JM, O’Neill AJ, Chopra I (2008) Increased mutability of Pseudomonas aeruginosa in biofilms. J Antimicrob Chemother 61(5):1053–1056. doi: 10.1093/jac/dkn044 CrossRefPubMedGoogle Scholar
  56. 56.
    Conibear TC, Collins SL, Webb JS (2009) Role of mutation in Pseudomonas aeruginosa biofilm development. PLoS One 4(7):e6289. doi: 10.1371/journal.pone.0006289 CrossRefPubMedCentralPubMedGoogle Scholar
  57. 57.
    Macià MD, Pérez JL, Molin S, Oliver A (2011) Dynamics of mutator and antibiotic-resistant populations in a pharmacokinetic/pharmacodynamic model of Pseudomonas aeruginosa biofilm treatment. Antimicrob Agents Chemother 55(11):5230–5237CrossRefPubMedCentralPubMedGoogle Scholar
  58. 58.
    Hassett DJ, Ma JF, Elkins JG, McDermott TR, Ochsner UA, West SE, Huang CT, Fredericks J, Burnett S, Stewart PS, McFeters G, Passador L, Iglewski BH (1999) Quorum sensing in Pseudomonas aeruginosa controls expression of catalase and superoxide dismutase genes and mediates biofilm susceptibility to hydrogen peroxide. Mol Microbiol 34(5):1082–1093CrossRefPubMedGoogle Scholar
  59. 59.
    Shih P-C, Huang C-T (2002) Effects of quorum-sensing deficiency on Pseudomonas aeruginosa biofilm formation and antibiotic resistance. J Antimicrob Chemother 49(2):309–314CrossRefPubMedGoogle Scholar
  60. 60.
    Bjarnsholt T, Jensen PØ, Burmølle M, Hentzer M, Haagensen JA, Hougen HP, Calum H, Madsen KG, Moser C, Molin S, Høiby N, Givskov M (2005) Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151(Pt 2):373–383CrossRefPubMedGoogle Scholar
  61. 61.
    Olsen I, Tribble GD, Fiehn NE, Wang BY (2013) Bacterial sex in dental plaque. J Oral Microbiol 3:5. doi: 10.3402/jom.v5i0.20736 Google Scholar
  62. 62.
    Kadurugamuwa JL, Beveridge TJ (1999) Membrane vesicles derived from Pseudomonas aeruginosa and Shigella flexneri can be integrated into the surfaces of other gram-negative bacteria. Microbiology 145(Pt 8):2051–2060CrossRefPubMedGoogle Scholar
  63. 63.
    Bhagwat AA, Gross KC, Tully RE, Keister DL (1996) Beta-glucan synthesis in Bradyrhizobium japonicum: characterization of a new locus (ndvC) influencing beta-(1→6) linkages. J Bacteriol 178(15):4635–4642PubMedCentralPubMedGoogle Scholar
  64. 64.
    Bhagwat AA, Tully RE, Keister DL (1993) Identification and cloning of a cyclic beta-(1→3), beta-(1→6)-D-glucan synthesis locus from Bradyrhizobium japonicum. FEMS Microbiol Lett 114(2):139–144PubMedGoogle Scholar
  65. 65.
    Mah T-F, Pitts B, Pellock B, Walker GC, Stewart PS, O’Toole GA (2003) A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426(6964):306–310CrossRefPubMedGoogle Scholar
  66. 66.
    Beaudoin T, Zhang L, Hinz AJ, Parr CJ, Mah T-F (2012) The biofilm-specific antibiotic resistance gene ndvB is important for expression of ethanol oxidation genes in Pseudomonas aeruginosa biofilms. J Bacteriol 194(12):3128–3136CrossRefPubMedCentralPubMedGoogle Scholar
  67. 67.
    Zhang L, Hinz AJ, Nadeau JP, Mah T-F (2011) Pseudomonas aeruginosa tssC1 links type VI secretion and biofilm-specific antibiotic resistance. J Bacteriol 193(19):5510–5513CrossRefPubMedCentralPubMedGoogle Scholar
  68. 68.
    Mah T-F (2012) Regulating antibiotic tolerance within biofilm microcolonies. J Bacteriol 194(18):4791–4792CrossRefPubMedCentralPubMedGoogle Scholar
  69. 69.
    Liao J, Sauer K (2012) The MerR-like transcriptional regulator BrlR contributes to Pseudomonas aeruginosa biofilm tolerance. J Bacteriol 194(18):4823–4836CrossRefPubMedCentralPubMedGoogle Scholar
  70. 70.
    Liao J, Schurr MJ, Sauer K (2013) The MerR-like regulator BrlR confers biofilm tolerance by activating multidrug efflux pumps in Pseudomonas aeruginosa biofilms. J Bacteriol 195(15):3352–3363CrossRefPubMedCentralPubMedGoogle Scholar
  71. 71.
    Lynch SV, Dixon L, Benoit MR, Brodie EL, Keyhan M, Hu P, Ackerley DF, Andersen GL, Matin A (2007) Role of the rapA gene in controlling antibiotic resistance of Escherichia coli biofilms. Antimicrob Agents Chemother 51(10):3650–3658CrossRefPubMedCentralPubMedGoogle Scholar
  72. 72.
    Zhang L, Fritsch M, Hammond L, Landreville R, Slatculescu C, Colavita A, Mah T-F (2013) Identification of genes involved in Pseudomonas aeruginosa biofilm-specific resistance to antibiotics. PLoS One 8(4):e61625CrossRefPubMedCentralPubMedGoogle Scholar
  73. 73.
    Gillis RJ, White KG, Choi K-H, Wagner VE, Schweizer HP, Iglewski BH (2005) Molecular basis of azithromycin-resistant Pseudomonas aeruginosa biofilms. Antimicrob Agents Chemother 49(9):3858–3867CrossRefPubMedCentralPubMedGoogle Scholar
  74. 74.
    Zhang L, Mah T-F (2008) Involvement of a novel efflux system in biofilm-specific resistance to antibiotics. J Bacteriol 190(13):4447–4452CrossRefPubMedCentralPubMedGoogle Scholar
  75. 75.
    Blair JMA, Webber MA, Baylay AJ, Ogbolu DO, Piddock LJV (2015) Molecular mechanisms of antibiotic resistance. Nat Rev Microbiol 13:42–51CrossRefPubMedGoogle Scholar
  76. 76.
    Alvarez-Ortega C, Olivares J, Martínez JL (2013) RND multidrug efflux pumps: what are they good for? Front Microbiol 4:7. doi: 10.3389/fmicb.2013.00007 CrossRefPubMedCentralPubMedGoogle Scholar
  77. 77.
    Roberts AP, Mullany P (2010) Oral biofilms: a reservoir of transferable, bacterial, antimicrobial resistance. Expert Rev Anti Infect Ther 8(12):1441–1450CrossRefPubMedGoogle Scholar
  78. 78.
    Römling U, Balsalobre C (2012) Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med 272(6):541–561. doi: 10.1111/joim.12004 CrossRefPubMedGoogle Scholar
  79. 79.
    Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol 2(2):95–108CrossRefPubMedGoogle Scholar
  80. 80.
    Lenz AP, Williamson KS, Pitts B, Stewart PS, Franklin MJ (2008) Localized gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 74(14):4463–4471. doi: 10.1128/AEM.00710-08 CrossRefPubMedCentralPubMedGoogle Scholar
  81. 81.
    Drenkard E, Ausubel FM (2002) Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416(6882):740–743CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Department of Oral Biology, Faculty of DentistryUniversity of OsloOsloNorway

Personalised recommendations