Effects of CYP3A4 polymorphisms on the plasma concentration of voriconazole

  • H.-R. He
  • J.-Y. Sun
  • X.-D. Ren
  • T.-T. Wang
  • Y.-J. Zhai
  • S.-Y. Chen
  • Y.-L. Dong
  • J. Lu


Voriconazole is frequently utilized for the prevention and treatment of invasive fungal infections (IFIs), and is extensively metabolized by the cytochrome P450 (CYP) system. The impact of activity of the genes encoding CYP3A4, CYP3A5, and CYP2C9 on the pharmacokinetics of voriconazole cannot be ignored because, second to CYP2C19, they are the most important enzymes involved in voriconazole metabolism. The influence of genetic polymorphisms in CYP3A4, CYP3A5, and CYP2C9 on the plasma concentrations of voriconazole was evaluated in the present study. The study cohort comprised 158 patients with IFIs in whom 22 single-nucleotide polymorphisms (SNPs) in CYP3A4, CYP3A5, and CYP2C9 were genotyped using the Sequenom MassARRAY RS1000 system, and voriconazole plasma concentrations were measured by high-performance liquid chromatography (HPLC). 40, 91, and 27 patients presented with low (<1 mg/L), normal (1–4 mg/L), and high (>4 mg/L) plasma voriconazole concentrations, respectively. Correlation analysis between polymorphisms and the plasma voriconazole concentration revealed an association between the presence of the rs4646437 T allele and a higher plasma voriconazole concentration [p = 0.033, odds ratio (OR) = 2.832, 95 % confidence interval (CI) = 1.086–7.384]. This study has identified a new SNP related to the metabolism of voriconazole, potentially providing novel insight into the influence of CYP3A4 on the pharmacokinetics of this antifungal agent.


Voriconazole Intron Retention CYP2C9 Genotype Voriconazole Concentration Intron Retention Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by the Fundamental Research Funds for the Central Universities of China (grant no. 08143047).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Chiou CC, Groll AH, Walsh TJ (2000) New drugs and novel targets for treatment of invasive fungal infections in patients with cancer. Oncologist 5(2):120–135CrossRefPubMedGoogle Scholar
  2. 2.
    Cocchi S, Codeluppi M, Venturelli C, Bedini A, Grottola A, Gennari W, Cavrini F, Di Benedetto F, De Ruvo N, Rumpianesi F, Gerunda GE, Guaraldi G (2011) Fusarium verticillioides fungemia in a liver transplantation patient: successful treatment with voriconazole. Diagn Microbiol Infect Dis 71(4):438–441CrossRefPubMedGoogle Scholar
  3. 3.
    Hamada Y, Seto Y, Yago K, Kuroyama M (2012) Investigation and threshold of optimum blood concentration of voriconazole: a descriptive statistical meta-analysis. J Infect Chemother 18(4):501–507CrossRefPubMedGoogle Scholar
  4. 4.
    Walsh TJ, Karlsson MO, Driscoll T, Arguedas AG, Adamson P, Saez-Llorens X, Vora AJ, Arrieta AC, Blumer J, Lutsar I, Milligan P, Wood N (2004) Pharmacokinetics and safety of intravenous voriconazole in children after single- or multiple-dose administration. Antimicrob Agents Chemother 48(6):2166–2172CrossRefPubMedCentralPubMedGoogle Scholar
  5. 5.
    Lazarus HM, Blumer JL, Yanovich S, Schlamm H, Romero A (2002) Safety and pharmacokinetics of oral voriconazole in patients at risk of fungal infection: a dose escalation study. J Clin Pharmacol 42(4):395–402CrossRefPubMedGoogle Scholar
  6. 6.
    Eiden C, Cociglio M, Hillaire-Buys D, Eymard-Duvernay S, Ceballos P, Fegueux N, Peyrière H (2010) Pharmacokinetic variability of voriconazole and N-oxide voriconazole measured as therapeutic drug monitoring. Xenobiotica 40(10):701–706CrossRefPubMedGoogle Scholar
  7. 7.
    Boyd AE, Modi S, Howard SJ, Moore CB, Keevil BG, Denning DW (2004) Adverse reactions to voriconazole. Clin Infect Dis 39(8):1241–1244CrossRefPubMedGoogle Scholar
  8. 8.
    Mikus G, Scholz IM, Weiss J (2011) Pharmacogenomics of the triazole antifungal agent voriconazole. Pharmacogenomics 12(6):861–872CrossRefPubMedGoogle Scholar
  9. 9.
    Geist MJ, Egerer G, Burhenne J, Riedel KD, Mikus G (2007) Induction of voriconazole metabolism by rifampin in a patient with acute myeloid leukemia: importance of interdisciplinary communication to prevent treatment errors with complex medications. Antimicrob Agents Chemother 51(9):3455–3456CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Mikus G, Schöwel V, Drzewinska M, Rengelshausen J, Ding R, Riedel KD, Burhenne J, Weiss J, Thomsen T, Haefeli WE (2006) Potent cytochrome P450 2C19 genotype-related interaction between voriconazole and the cytochrome P450 3A4 inhibitor ritonavir. Clin Pharmacol Ther 80(2):126–135CrossRefPubMedGoogle Scholar
  11. 11.
    Rengelshausen J, Banfield M, Riedel KD, Burhenne J, Weiss J, Thomsen T, Walter-Sack I, Haefeli WE, Mikus G (2005) Opposite effects of short-term and long-term St John’s wort intake on voriconazole pharmacokinetics. Clin Pharmacol Ther 78(1):25–33CrossRefPubMedGoogle Scholar
  12. 12.
    Hafner V, Albermann N, Haefeli WE, Ebinger F (2008) Inhibition of voriconazole metabolism by chloramphenicol in an adolescent with central nervous system aspergillosis. Antimicrob Agents Chemother 52(11):4172–4174CrossRefPubMedCentralPubMedGoogle Scholar
  13. 13.
    Weiss J, Ten Hoevel MM, Burhenne J, Walter-Sack I, Hoffmann MM, Rengelshausen J, Haefeli WE, Mikus G (2009) CYP2C19 genotype is a major factor contributing to the highly variable pharmacokinetics of voriconazole. J Clin Pharmacol 49(2):196–204CrossRefPubMedGoogle Scholar
  14. 14.
    Prakash G, Sharma N, Goel M, Titiyal JS, Vajpayee RB (2008) Evaluation of intrastromal injection of voriconazole as a therapeutic adjunctive for the management of deep recalcitrant fungal keratitis. Am J Ophthalmol 146(1):56–59CrossRefPubMedGoogle Scholar
  15. 15.
    Andes D, Pascual A, Marchetti O (2009) Antifungal therapeutic drug monitoring: established and emerging indications. Antimicrob Agents Chemother 53(1):24–34CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Geist MJ, Egerer G, Burhenne J, Riedel KD, Weiss J, Mikus G (2013) Steady-state pharmacokinetics and metabolism of voriconazole in patients. J Antimicrob Chemother 68(11):2592–2599CrossRefPubMedGoogle Scholar
  17. 17.
    Wang T, Chen S, Sun J, Cai J, Cheng X, Dong H, Wang X, Xing J, Dong W, Yao H, Dong Y (2014) Identification of factors influencing the pharmacokinetics of voriconazole and the optimization of dosage regimens based on Monte Carlo simulation in patients with invasive fungal infections. J Antimicrob Chemother 69(2):463–470CrossRefPubMedGoogle Scholar
  18. 18.
    Geist MJ, Egerer G, Burhenne J, Mikus G (2006) Safety of voriconazole in a patient with CYP2C9*2/CYP2C9*2 genotype. Antimicrob Agents Chemother 50(9):3227–3228CrossRefPubMedCentralPubMedGoogle Scholar
  19. 19.
    Levin MD, den Hollander JG, van der Holt B, Rijnders BJ, van Vliet M, Sonneveld P, van Schaik RH (2007) Hepatotoxicity of oral and intravenous voriconazole in relation to cytochrome P450 polymorphisms. J Antimicrob Chemother 60(5):1104–1107CrossRefPubMedGoogle Scholar
  20. 20.
    Wojnowski L (2004) Genetics of the variable expression of CYP3A in humans. Ther Drug Monit 26(2):192–199CrossRefPubMedGoogle Scholar
  21. 21.
    Yamazaki H, Nakamoto M, Shimizu M, Murayama N, Niwa T (2010) Potential impact of cytochrome P450 3A5 in human liver on drug interactions with triazoles. Br J Clin Pharmacol 69(6):593–597CrossRefPubMedCentralPubMedGoogle Scholar
  22. 22.
    De Pauw B, Walsh TJ, Donnelly JP, Stevens DA, Edwards JE, Calandra T, Pappas PG, Maertens J, Lortholary O, Kauffman CA, Denning DW, Patterson TF, Maschmeyer G, Bille J, Dismukes WE, Herbrecht R, Hope WW, Kibbler CC, Kullberg BJ, Marr KA, Muñoz P, Odds FC, Perfect JR, Restrepo A, Ruhnke M, Segal BH, Sobel JD, Sorrell TC, Viscoli C, Wingard JR, Zaoutis T, Bennett JE; European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group; National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group (2008) Revised definitions of invasive fungal disease from the European Organization for Research and Treatment of Cancer/Invasive Fungal Infections Cooperative Group and the National Institute of Allergy and Infectious Diseases Mycoses Study Group (EORTC/MSG) Consensus Group. Clin Infect Dis 46(12):1813–1821CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    He GH, Lu J, Shi PP, Xia W, Yin SJ, Jin TB, Chen DD, Xu GL (2013) Polymorphisms of human histamine receptor H4 gene are associated with breast cancer in Chinese Han population. Gene 519(2):260–265CrossRefPubMedGoogle Scholar
  24. 24.
    Li S, Jin T, Zhang J, Lou H, Yang B, Li Y, Chen C, Zhang Y (2012) Polymorphisms of TREH, IL4R and CCDC26 genes associated with risk of glioma. Cancer Epidemiol 36(3):283–287CrossRefPubMedGoogle Scholar
  25. 25.
    Gabriel S, Ziaugra L, Tabbaa D (2009) SNP genotyping using the Sequenom MassARRAY iPLEX platform. Curr Protoc Hum Genet Chapter 2:Unit 2.12PubMedGoogle Scholar
  26. 26.
    Thomas RK, Baker AC, Debiasi RM, Winckler W, Laframboise T, Lin WM, Wang M, Feng W, Zander T, MacConaill L, Lee JC, Nicoletti R, Hatton C, Goyette M, Girard L, Majmudar K, Ziaugra L, Wong KK, Gabriel S, Beroukhim R, Peyton M, Barretina J, Dutt A, Emery C, Greulich H, Shah K, Sasaki H, Gazdar A, Minna J, Armstrong SA, Mellinghoff IK, Hodi FS, Dranoff G, Mischel PS, Cloughesy TF, Nelson SF, Liau LM, Mertz K, Rubin MA, Moch H, Loda M, Catalona W, Fletcher J, Signoretti S, Kaye F, Anderson KC, Demetri GD, Dummer R, Wagner S, Herlyn M, Sellers WR, Meyerson M, Garraway LA (2007) High-throughput oncogene mutation profiling in human cancer. Nat Genet 39(3):347–351CrossRefPubMedGoogle Scholar
  27. 27.
    Zonios D, Yamazaki H, Murayama N, Natarajan V, Palmore T, Childs R, Skinner J, Bennett JE (2014) Voriconazole metabolism, toxicity, and the effect of cytochrome P450 2C19 genotype. J Infect Dis 209(12):1941–1948CrossRefPubMedGoogle Scholar
  28. 28.
    Schuetz EG, Relling MV, Kishi S, Yang W, Das S, Chen P, Cook EH, Rosner GL, Pui CH, Blanco JG, Edick MJ, Hancock ML, Winick NJ, Dervieux T, Amylon MD, Bash RO, Behm FG, Camitta BM, Raimondi SC, Goh BC, Lee SC, Wang LZ, Fan L, Guo JY, Lamba J, Lim R, Lim HL, Ong AB, Lee HS, Kuehl P, Zhang J, Lin Y, Assem M, Schuetz J, Watkins PB, Daly A, Wrighton SA, Hall SD, Maurel P, Brimer C, Yasuda K, Venkataramanan R, Strom S, Thummel K, Boguski MS (2004) PharmGKB update: II. CYP3A5, cytochrome P450, family 3, subfamily A, polypeptide 5. Pharmacol Rev 56(2):159CrossRefPubMedGoogle Scholar
  29. 29.
    Daly AK (2006) Significance of the minor cytochrome P450 3A isoforms. Clin Pharmacokinet 45(1):13–31CrossRefPubMedGoogle Scholar
  30. 30.
    Murayama N, Imai N, Nakane T, Shimizu M, Yamazaki H (2007) Roles of CYP3A4 and CYP2C19 in methyl hydroxylated and N-oxidized metabolite formation from voriconazole, a new anti-fungal agent, in human liver microsomes. Biochem Pharmacol 73(12):2020–2026CrossRefPubMedGoogle Scholar
  31. 31.
    Choong E, Polari A, Kamdem RH, Gervasoni N, Spisla C, Jaquenoud Sirot E, Bickel GG, Bondolfi G, Conus P, Eap CB (2013) Pharmacogenetic study on risperidone long-acting injection: influence of cytochrome P450 2D6 and pregnane X receptor on risperidone exposure and drug-induced side-effects. J Clin Psychopharmacol 33(3):289–298CrossRefPubMedGoogle Scholar
  32. 32.
    Mannheimer B, Holm J, Koukel L, Bertilsson L, Osby U, Eliasson E (2014) Risperidone metabolic ratio as a biomarker of individual CYP2D6 genotype in schizophrenic patients. Eur J Clin Pharmacol 70(6):695–699CrossRefPubMedGoogle Scholar
  33. 33.
    Li CJ, Li L, Lin L, Jiang HX, Zhong ZY, Li WM, Zhang YJ, Zheng P, Tan XH, Zhou L (2014) Impact of the CYP3A5, CYP3A4, COMT, IL-10 and POR genetic polymorphisms on tacrolimus metabolism in Chinese renal transplant recipients. PLoS One 9(1):e86206CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Gijsen VM, van Schaik RH, Elens L, Soldin OP, Soldin SJ, Koren G, de Wildt SN (2013) CYP3A4*22 and CYP3A combined genotypes both correlate with tacrolimus disposition in pediatric heart transplant recipients. Pharmacogenomics 14(9):1027–1036CrossRefPubMedGoogle Scholar
  35. 35.
    Choi JW, Park CS, Hwang M, Nam HY, Chang HS, Park SG, Han BG, Kimm K, Kim HL, Oh B, Kim Y (2008) A common intronic variant of CXCR3 is functionally associated with gene expression levels and the polymorphic immune cell responses to stimuli. J Allergy Clin Immunol 122(6):1119–1126.e7CrossRefPubMedGoogle Scholar
  36. 36.
    Howe KJ, Ares M Jr (1997) Intron self-complementarity enforces exon inclusion in a yeast pre-mRNA. Proc Natl Acad Sci U S A 94(23):12467–12472CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Pohl M, Bortfeldt RH, Grützmann K, Schuster S (2013) Alternative splicing of mutually exclusive exons—a review. Biosystems 114(1):31–38CrossRefPubMedGoogle Scholar
  38. 38.
    Wang Z, Xiao X, Van Nostrand E, Burge CB (2006) General and specific functions of exonic splicing silencers in splicing control. Mol Cell 23(1):61–70CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Pharmacy, The First Affiliated Hospital of Medical CollegeXi’an Jiaotong UniversityXi’anPeople’s Republic of China

Personalised recommendations