Molecular epidemiology of Cryptococcus neoformans and Cryptococcus gattii in China between 2007 and 2013 using multilocus sequence typing and the DiversiLab system

  • H.-T. Dou
  • Y.-C. Xu
  • H.-Z. Wang
  • T.-S. LiEmail author


The purpose of this study was to investigate the molecular characteristics of 83 clinical Cryptococcus neoformans/C. gattii species complex isolated in Beijing, China, between 2007 and 2013. Restriction fragment length polymorphism of the gene URA5 (URA5-RFLP), multilocus sequence typing (MLST), and automated repetitive polymerase chain reaction (rep-PCR; DiversiLab system) were performed to genotype these cryptococcal isolates. There was an excellent correlation amongst the three methods; however, PU157 was assigned as VNII according to URA5-RFLP, while it was classified as VNI by the DiversiLab system analysis. PU157 was finally identified as VNB by seven-locus MLST analysis. Moreover, though AD hybrids could not be processed by MLST, ideal results could be obtained by the DiversiLab system. The genotype VNI accounted for 95.2 % (79/83) of isolates. Besides one strain of VNB, VNIII, and VGI each, a strain of VGII was detected in our study, which was isolated from a patient from the temperate region in North China. In addition, the most common MLST sequence type (ST) was ST5, accounting for 91.6 % (76/83), followed by ST31, ST63, ST182, ST295, ST296, and ST332. ST295, ST296, and ST332 were new STs. Except for isolate PU157 (VNB), identical results were obtained quickly and accurately through the DiversiLab system compared to MLST and URA5-RFLP. The discovery of VNB and VGII in the temperate climate regions of China suggested that the population structure of C. neoformans and C. gattii should be explored more extensively. Our results also showed that the DiversiLab system can be used in the genotyping of C. neoformans and C. gattii.


Amplify Fragment Length Polymorphism Multilocus Sequence Typing Peking Union Medical College Hospital MLST Database MLST Analysis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank Prof. Dr. Wieland Meyer (Molecular Mycology Research Laboratory, Westmead Hospital, Australia) for the reference isolates in our study originating from their laboratory. We also thank Dr. Luciana Trilles (Molecular Mycology Laboratory, Westmead Hospital, Australia) for providing the MLST STs of the VNB isolates. This work was supported by the National Key Technologies R&D Program for the 12th Five-Year Plan (grant number 2012ZX10001003).

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    La Hoz RM, Pappas PG (2013) Cryptococcal infections: changing epidemiology and implications for therapy. Drugs 73:495–504. doi: 10.1007/s40265-013-0037-z CrossRefPubMedGoogle Scholar
  2. 2.
    Liao Y, Chen M, Hartmann T, Yang RY, Liao WQ (2013) Epidemiology of opportunistic invasive fungal infections in China: review of literature. Chin Med J (Engl) 126:361–368Google Scholar
  3. 3.
    Pfaller MA, Diekema DJ (2010) Epidemiology of invasive mycoses in North America. Crit Rev Microbiol 36:1–53. doi: 10.3109/10408410903241444 CrossRefPubMedGoogle Scholar
  4. 4.
    Ellis DH, Pfeiffer TJ (1990) Ecology, life cycle, and infectious propagule of Cryptococcus neoformans. Lancet 336:923–925CrossRefPubMedGoogle Scholar
  5. 5.
    Kidd SE, Hagen F, Tscharke RL, Huynh M, Bartlett KH, Fyfe M, Macdougall L, Boekhout T, Kwon-Chung KJ, Meyer W (2004) A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci U S A 101:17258–17263. doi: 10.1073/pnas.0402981101 CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Chaturvedi V, Chaturvedi S (2011) Cryptococcus gattii: a resurgent fungal pathogen. Trends Microbiol 19:564–571. doi: 10.1016/j.tim.2011.07.010 CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Byrnes EJ 3rd, Bildfell RJ, Frank SA, Mitchell TG, Marr KA, Heitman J (2009) Molecular evidence that the range of the Vancouver Island outbreak of Cryptococcus gattii infection has expanded into the Pacific Northwest in the United States. J Infect Dis 199:1081–1086. doi: 10.1086/597306 CrossRefPubMedCentralPubMedGoogle Scholar
  8. 8.
    Hagen F, Ceresini PC, Polacheck I, Ma H, van Nieuwerburgh F, Gabaldón T, Kagan S, Pursall ER, Hoogveld HL, van Iersel LJ, Klau GW, Kelk SM, Stougie L, Bartlett KH, Voelz K, Pryszcz LP, Castañeda E, Lazera M, Meyer W, Deforce D, Meis JF, May RC, Klaassen CH, Boekhout T (2013) Ancient dispersal of the human fungal pathogen Cryptococcus gattii from the Amazon rainforest. PLoS One 8:e71148. doi: 10.1371/journal.pone.0071148 CrossRefPubMedCentralPubMedGoogle Scholar
  9. 9.
    Meyer W, Aanensen DM, Boekhout T, Cogliati M, Diaz MR, Esposto MC, Fisher M, Gilgado F, Hagen F, Kaocharoen S, Litvintseva AP, Mitchell TG, Simwami SP, Trilles L, Viviani MA, Kwon-Chung J (2009) Consensus multi-locus sequence typing scheme for Cryptococcus neoformans and Cryptococcus gattii. Med Mycol 47:561–570. doi: 10.1080/13693780902953886 CrossRefPubMedCentralPubMedGoogle Scholar
  10. 10.
    Meyer W, Castañeda A, Jackson S, Huynh M, Castañeda E; IberoAmerican Cryptococcal Study Group (2003) Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis 9:189–195. doi: 10.3201/eid0902.020246 CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Litvintseva AP, Thakur R, Vilgalys R, Mitchell TG (2006) Multilocus sequence typing reveals three genetic subpopulations of Cryptococcus neoformans var. grubii (serotype A), including a unique population in Botswana. Genetics 172:2223–2238. doi: 10.1534/genetics.105.046672 CrossRefPubMedCentralPubMedGoogle Scholar
  12. 12.
    Cogliati M, Zamfirova RR, Tortorano AM, Viviani MA; Fimua Cryptococcosis Network (2013) Molecular epidemiology of Italian clinical Cryptococcus neoformans var. grubii isolates. Med Mycol 51:499–506. doi: 10.3109/13693786.2012.751642 CrossRefPubMedGoogle Scholar
  13. 13.
    Bovers M, Hagen F, Kuramae EE, Diaz MR, Spanjaard L, Dromer F, Hoogveld HL, Boekhout T (2006) Unique hybrids between the fungal pathogens Cryptococcus neoformans and Cryptococcus gattii. FEMS Yeast Res 6:599–607. doi: 10.1111/j.1567-1364.2006.00082.x CrossRefPubMedGoogle Scholar
  14. 14.
    Bovers M, Hagen F, Kuramae EE, Hoogveld HL, Dromer F, St-Germain G, Boekhout T (2008) AIDS patient death caused by novel Cryptococcus neoformans × C. gattii hybrid. Emerg Infect Dis 14:1105–1108. doi: 10.3201/eid1407.080122 CrossRefPubMedCentralPubMedGoogle Scholar
  15. 15.
    Perfect JR, Ketabchi N, Cox GM, Ingram CW, Beiser CL (1993) Karyotyping of Cryptococcus neoformans as an epidemiological tool. J Clin Microbiol 31:3305–3309PubMedCentralPubMedGoogle Scholar
  16. 16.
    Meyer W, Marszewska K, Amirmostofian M, Igreja RP, Hardtke C, Methling K, Viviani MA, Chindamporn A, Sukroongreung S, John MA, Ellis DH, Sorrell TC (1999) Molecular typing of global isolates of Cryptococcus neoformans var. neoformans by polymerase chain reaction fingerprinting and randomly amplified polymorphic DNA—a pilot study to standardize techniques on which to base a detailed epidemiological survey. Electrophoresis 20:1790–1799. doi: 10.1002/(SICI)1522-2683(19990101)20:8<1790::AID-ELPS1790>3.0.CO;2-2 CrossRefPubMedGoogle Scholar
  17. 17.
    Chen J, Varma A, Diaz MR, Litvintseva AP, Wollenberg KK, Kwon-Chung KJ (2008) Cryptococcus neoformans strains and infection in apparently immunocompetent patients, China. Emerg Infect Dis 14:755–762. doi: 10.3201/eid1405.071312 CrossRefPubMedCentralPubMedGoogle Scholar
  18. 18.
    Feng X, Yao Z, Ren D, Liao W, Wu J (2008) Genotype and mating type analysis of Cryptococcus neoformans and Cryptococcus gattii isolates from China that mainly originated from non-HIV-infected patients. FEMS Yeast Res 8:930–938. doi: 10.1111/j.1567-1364.2008.00422.x CrossRefPubMedGoogle Scholar
  19. 19.
    Mihara T, Izumikawa K, Kakeya H, Ngamskulrungroj P, Umeyama T, Takazono T, Tashiro M, Nakamura S, Imamura Y, Miyazaki T, Ohno H, Yamamoto Y, Yanagihara K, Miyzaki Y, Kohno S (2013) Multilocus sequence typing of Cryptococcus neoformans in non-HIV associated cryptococcosis in Nagasaki, Japan. Med Mycol 51:252–260. doi: 10.3109/13693786.2012.708883 CrossRefPubMedGoogle Scholar
  20. 20.
    Boekhout T, Theelen B, Diaz M, Fell JW, Hop WC, Abeln EC, Dromer F, Meyer W (2001) Hybrid genotypes in the pathogenic yeast Cryptococcus neoformans. Microbiology 147:891–907PubMedGoogle Scholar
  21. 21.
    Hagen F, Chowdhary A, Prakash A, Yntema JB, Meis JF (2014) Molecular characterization of Cryptococcus gattii genotype AFLP6/VGII isolated from woody debris of divi-divi (Caesalpinia coriaria), Bonaire, Dutch Caribbean. Rev Iberoam Micol 31:193–196. doi: 10.1016/j.riam.2013.10.007 CrossRefPubMedGoogle Scholar
  22. 22.
    Fraser JA, Giles SS, Wenink EC, Geunes-Boyer SG, Wright JR, Diezmann S, Allen A, Stajich JE, Dietrich FS, Perfect JR, Heitman J (2005) Same-sex mating and the origin of the Vancouver Island Cryptococcus gattii outbreak. Nature 437:1360–1364. doi: 10.1038/nature04220 CrossRefPubMedGoogle Scholar
  23. 23.
    Pan W, Khayhan K, Hagen F, Wahyuningsih R, Chakrabarti A, Chowdhary A, Ikeda R, Taj-Aldeen SJ, Khan Z, Imran D, Sjam R, Sriburee P, Liao W, Chaicumpar K, Ingviya N, Mouton JW, Curfs-Breuker I, Boekhout T, Meis JF, Klaassen CH (2012) Resistance of Asian Cryptococcus neoformans serotype A is confined to few microsatellite genotypes. PLoS One 7:e32868. doi: 10.1371/journal.pone.0032868 CrossRefPubMedCentralPubMedGoogle Scholar
  24. 24.
    Healy M, Huong J, Bittner T, Lising M, Frye S, Raza S, Schrock R, Manry J, Renwick A, Nieto R, Woods C, Versalovic J, Lupski JR (2005) Microbial DNA typing by automated repetitive-sequence-based PCR. J Clin Microbiol 43:199–207. doi: 10.1128/jcm.43.1.199-207.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  25. 25.
    Wise MG, Healy M, Reece K, Smith R, Walton D, Dutch W, Renwick A, Huong J, Young S, Tarrand J, Kontoyiannis DP (2007) Species identification and strain differentiation of clinical Candida isolates using the DiversiLab system of automated repetitive sequence-based PCR. J Med Microbiol 56:778–787. doi: 10.1099/jmm.0.47106-0 CrossRefPubMedGoogle Scholar
  26. 26.
    Treviño M, García-Riestra C, Areses P, García X, Navarro D, Suárez FJ, López-Dequidt IA, Zaragoza O, Cuenca-Estrella M (2014) Emerging Trichosporon asahii in elderly patients: epidemiological and molecular analysis by the DiversiLab system. Eur J Clin Microbiol Infect Dis 33:1497–1503. doi: 10.1007/s10096-014-2099-6 CrossRefPubMedGoogle Scholar
  27. 27.
    Healy M, Reece K, Walton D, Huong J, Shah K, Kontoyiannis DP (2004) Identification to the species level and differentiation between strains of Aspergillus clinical isolates by automated repetitive-sequence-based PCR. J Clin Microbiol 42:4016–4024. doi: 10.1128/jcm.42.9.4016-4024.2004 CrossRefPubMedCentralPubMedGoogle Scholar
  28. 28.
    Healy M, Reece K, Walton D, Huong J, Frye S, Raad II, Kontoyiannis DP (2005) Use of the Diversi Lab System for species and strain differentiation of Fusarium species isolates. J Clin Microbiol 43:5278–5280. doi: 10.1128/jcm.43.10.5278-5280.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  29. 29.
    Pounder JI, Williams S, Hansen D, Healy M, Reece K, Woods GL (2005) Repetitive-sequence-PCR-based DNA fingerprinting using the DiversiLab system for identification of commonly encountered dermatophytes. J Clin Microbiol 43:2141–2147. doi: 10.1128/jcm.43.5.2141-2147.2005 CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Pounder JI, Hansen D, Woods GL (2006) Identification of Histoplasma capsulatum, Blastomyces dermatitidis, and Coccidioides species by repetitive-sequence-based PCR. J Clin Microbiol 44:2977–2982. doi: 10.1128/jcm.00687-06 CrossRefPubMedCentralPubMedGoogle Scholar
  31. 31.
    Kwon-Chung KJ, Polacheck I, Bennett JE (1982) Improved diagnostic medium for separation of Cryptococcus neoformans var. neoformans (serotypes A and D) and Cryptococcus neoformans var. gattii (serotypes B and C). J Clin Microbiol 15:535–537PubMedCentralPubMedGoogle Scholar
  32. 32.
    Bovers M, Hagen F, Kuramae EE, Boekhout T (2008) Six monophyletic lineages identified within Cryptococcus neoformans and Cryptococcus gattii by multi-locus sequence typing. Fungal Genet Biol 45:400–421. doi: 10.1016/j.fgb.2007.12.004 CrossRefPubMedGoogle Scholar
  33. 33.
    Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729. doi: 10.1093/molbev/mst197 CrossRefPubMedCentralPubMedGoogle Scholar
  34. 34.
    Choi YH, Ngamskulrungroj P, Varma A, Sionov E, Hwang SM, Carriconde F, Meyer W, Litvintseva AP, Lee WG, Shin JH, Kim EC, Lee KW, Choi TY, Lee YS, Kwon-Chung KJ (2010) Prevalence of the VNIc genotype of Cryptococcus neoformans in non-HIV-associated cryptococcosis in the Republic of Korea. FEMS Yeast Res 10:769–778. doi: 10.1111/j.1567-1364.2010.00648.x CrossRefPubMedCentralPubMedGoogle Scholar
  35. 35.
    Carriconde F, Gilgado F, Arthur I, Ellis D, Malik R, van de Wiele N, Robert V, Currie BJ, Meyer W (2011) Clonality and alpha-a recombination in the Australian Cryptococcus gattii VGII population—an emerging outbreak in Australia. PLoS One 6:e16936. doi: 10.1371/journal.pone.0016936 CrossRefPubMedCentralPubMedGoogle Scholar
  36. 36.
    Khayhan K, Hagen F, Pan W, Simwami S, Fisher MC, Wahyuningsih R, Chakrabarti A, Chowdhary A, Ikeda R, Taj-Aldeen SJ, Khan Z, Ip M, Imran D, Sjam R, Sriburee P, Liao W, Chaicumpar K, Vuddhakul V, Meyer W, Trilles L, van Iersel LJ, Meis JF, Klaassen CH, Boekhout T (2013) Geographically structured populations of Cryptococcus neoformans variety grubii in Asia correlate with HIV status and show a clonal population structure. PLoS One 8:e72222. doi: 10.1371/journal.pone.0072222 CrossRefPubMedCentralPubMedGoogle Scholar
  37. 37.
    Simwami SP, Khayhan K, Henk DA, Aanensen DM, Boekhout T, Hagen F, Brouwer AE, Harrison TS, Donnelly CA, Fisher MC (2011) Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin. PLoS Pathog 7:e1001343. doi: 10.1371/journal.ppat.1001343 CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Tseng HK, Liu CP, Ho MW, Lu PL, Lo HJ, Lin YH, Cho WL, Chen YC; Taiwan Infectious Diseases Study Network for Cryptococcosis (2013) Microbiological, epidemiological, and clinical characteristics and outcomes of patients with cryptococcosis in Taiwan, 1997–2010. PLoS One 8:e61921. doi: 10.1371/journal.pone.0061921 CrossRefPubMedCentralPubMedGoogle Scholar
  39. 39.
    Ngamskulrungroj P, Gilgado F, Faganello J, Litvintseva AP, Leal AL, Tsui KM, Mitchell TG, Vainstein MH, Meyer W (2009) Genetic diversity of the Cryptococcus species complex suggests that Cryptococcus gattii deserves to have varieties. PLoS One 4:e5862. doi: 10.1371/journal.pone.0005862 CrossRefPubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Clinical Laboratory, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina
  2. 2.Department of Clinical Laboratory, Beijing Di-Tan HospitalCapital Medical UniversityBeijingChina
  3. 3.Department of Infectious Diseases, Peking Union Medical College Hospital, Peking Union Medical CollegeChinese Academy of Medical SciencesBeijingChina

Personalised recommendations