Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae in cancer patients

  • M. P. Freire
  • L. C. Pierrotti
  • H. H. C. Filho
  • K. Y. Ibrahim
  • A. S. G. K. Magri
  • P. R. Bonazzi
  • L. Hajar
  • M. P. E. Diz
  • J. Pereira
  • P. M. Hoff
  • E. Abdala


Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae (KPC-Kp) is an emergent pathogen in healthcare-associated infections (HAIs). The aim of this study was to describe HAIs due to KPC-Kp, as well as identify mortality risk factors in cancer patients. In patients diagnosed with HAIs due to KPC-Kp between January 2009 and July 2013, we evaluated only the first infection episode of each patient, analyzing mortality separately for patients treated for ≥48 h with at least one antimicrobial agent proven to display in vitro activity against KPC-Kp. We evaluated variables related to the malignancy, the severity and characteristics of the HAI, and the antimicrobial therapy. We identified 83 HAIs due to KPC-Kp. The 30-day mortality was 57.8 % for all infections and 72.7 % for bacteremic infections. Of the 83 patients, 60 patients received ≥48 h of appropriate treatment and 44 (53 %) developed bacteremia. Ten patients (12 %) were neutropenic at HAI diagnosis and 33 (39.8 %) had infection at the tumor site. The most common HAI was urinary tract infection, seen in 26 patients (31.3 %), followed by primary bloodstream infection, seen in 24 patients (28.9 %). Forty-four patients (73.3 %) received combination antimicrobial therapy, most often including polymyxin (68.3 %). Risk factors for 30-day mortality are high sequential organ failure assessment (SOFA) score, need for intensive care stay at diagnosis of infection, and acute kidney injury; the removal of invasive devices related to infection and treatment with effective antibiotics for KPC-Kp are protective factors. In cancer patients, high mortality is associated with HAI due to KPC-Kp and mortality risk factors are more often related to acute infection than to the underlying disease.


Sequential Organ Failure Assessment Colistin Carbapenem Polymyxin Sequential Organ Failure Assessment Score 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Schelenz S, Nwaka D, Hunter PR (2013) Longitudinal surveillance of bacteraemia in haematology and oncology patients at a UK cancer centre and the impact of ciprofloxacin use on antimicrobial resistance. J Antimicrob Chemother 68(6):1431–1438CrossRefPubMedGoogle Scholar
  2. 2.
    Nordmann P, Cuzon G, Naas T (2009) The real threat of Klebsiella pneumoniae carbapenemase-producing bacteria. Lancet Infect Dis 9:228–236CrossRefPubMedGoogle Scholar
  3. 3.
    Yigit H, Queenan AM, Anderson GJ, Domenech-Sanchez A, Biddle JW, Steward CD, Alberti S, Bush K, Tenover FC (2001) Novel carbapenem-hydrolyzing beta-lactamase, KPC-1, from a carbapenem-resistant strain of Klebsiella pneumoniae. Antimicrob Agents Chemother 45(4):1151–1161CrossRefPubMedCentralPubMedGoogle Scholar
  4. 4.
    Munoz-Price LS, Poirel L, Bonomo RA, Schwaber MJ, Daikos GL, Cormican M, Cornaglia G, Garau J, Gniadkowski M, Hayden MK, Kumarasamy K, Livermore DM, Maya JJ, Nordmann P, Patel JB, Paterson DL, Pitout J, Villegas MV, Wang H, Woodford N, Quinn JP (2013) Clinical epidemiology of the global expansion of Klebsiella pneumoniae carbapenemases. Lancet Infect Dis 13(9):785–796CrossRefPubMedGoogle Scholar
  5. 5.
    Gasink LB, Edelstein PH, Lautenbach E, Synnestvedt M, Fishman NO (2009) Risk factors and clinical impact of Klebsiella pneumoniae carbapenemase-producing K. pneumoniae. Infect Control Hosp Epidemiol 30:1180–1185CrossRefPubMedCentralPubMedGoogle Scholar
  6. 6.
    Schwaber MJ, Klarfeld-Lidji S, Navon-Venezia S, Schwartz D, Leavitt A, Carmeli Y (2008) Predictors of carbapenem-resistant Klebsiella pneumoniae acquisition among hospitalized adults and effect of acquisition on mortality. Antimicrob Agents Chemother 52:1028–1033CrossRefPubMedCentralPubMedGoogle Scholar
  7. 7.
    Patel G, Huprikar S, Factor SH, Jenkins SG, Calfee DP (2008) Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies. Infect Control Hosp Epidemiol 29:1099–1106CrossRefPubMedGoogle Scholar
  8. 8.
    Kwak YG, Choi SH, Choo EJ, Chung JW, Jeong JY, Kim NJ, Woo JH, Ryu J, Kim YS (2005) Risk factors for the acquisition of carbapenem-resistant Klebsiella pneumoniae among hospitalized patients. Microb Drug Resist 11:165–168CrossRefPubMedGoogle Scholar
  9. 9.
    Orsi GB, Bencardino A, Vena A, Carattoli A, Venditti C, Falcone M, Giordano A, Venditti M (2013) Patient risk factors for outer membrane permeability and KPC-producing carbapenem-resistant Klebsiella pneumoniae isolation: results of a double case–control study. Infection 41(1):61–67CrossRefPubMedGoogle Scholar
  10. 10.
    Marchaim D, Navon-Venezia S, Schwaber MJ, Carmeli Y (2008) Isolation of imipenem-resistant Enterobacter species: emergence of KPC-2 carbapenemase, molecular characterization, epidemiology, and outcomes. Antimicrob Agents Chemother 52:1413–1418CrossRefPubMedCentralPubMedGoogle Scholar
  11. 11.
    Mouloudi E, Protonotariou E, Zagorianou A, Iosifidis E, Karapanagiotou A, Giasnetsova T, Tsioka A, Roilides E, Sofianou D, Gritsi-Gerogianni N (2010) Bloodstream infections caused by metallo-β-lactamase/Klebsiella pneumoniae carbapenemase-producing K. pneumoniae among intensive care unit patients in Greece: risk factors for infection and impact of type of resistance on outcomes. Infect Control Hosp Epidemiol 31(12):1250–1256CrossRefPubMedGoogle Scholar
  12. 12.
    Souli M, Galani I, Antoniadou A, Papadomichelakis E, Poulakou G, Panagea T, Vourli S, Zerva L, Armaganidis A, Kanellakopoulou K, Giamarellou H (2010) An outbreak of infection due to beta-lactamase Klebsiella pneumoniae carbapenemase 2-producing K. pneumoniae in a Greek university hospital: molecular characterization, epidemiology, and outcomes. Clin Infect Dis 50:364–373CrossRefPubMedGoogle Scholar
  13. 13.
    Zarkotou O, Pournaras S, Tselioti P, Dragoumanos V, Pitiriga V, Ranellou K, Prekates A, Themeli-Digalaki K, Tsakris A (2011) Predictors of mortality in patients with bloodstream infections caused by KPC-producing Klebsiella pneumoniae and impact of appropriate antimicrobial treatment. Clin Microbiol Infect 17:1798–1803CrossRefPubMedGoogle Scholar
  14. 14.
    Tumbarello M, Viale P, Viscoli C, Trecarichi EM, Tumietto F, Marchese A, Spanu T, Ambretti S, Ginocchio F, Cristini F, Losito AR, Tedeschi S, Cauda R, Bassetti M (2012) Predictors of mortality in bloodstream infections caused by Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: importance of combination therapy. Clin Infect Dis 55(7):943–950CrossRefPubMedGoogle Scholar
  15. 15.
    Clancy CJ, Chen L, Shields RK, Zhao Y, Cheng S, Chavda KD, Hao B, Hong JH, Doi Y, Kwak EJ, Silveira FP, Abdel-Massih R, Bogdanovich T, Humar A, Perlin DS, Kreiswirth BN, Hong Nguyen M (2013) Epidemiology and molecular characterization of bacteremia due to carbapenem-resistant Klebsiella pneumoniae in transplant recipients. Am J Transplant 13(10):2619–2633CrossRefPubMedCentralPubMedGoogle Scholar
  16. 16.
    Bergamasco MD, Barroso Barbosa M, de Oliveira Garcia D, Cipullo R, Moreira JC, Baia C, Barbosa V, Abboud CS (2012) Infection with Klebsiella pneumoniae carbapenemase (KPC)-producing K. pneumoniae in solid organ transplantation. Transpl Infect Dis 14(2):198–205CrossRefPubMedGoogle Scholar
  17. 17.
    Satlin MJ, Calfee DP, Chen L, Fauntleroy KA, Wilson SJ, Jenkins SG, Feldman EJ, Roboz GJ, Shore TB, Helfgott DC, Soave R, Kreiswirth BN, Walsh TJ (2013) Emergence of carbapenem-resistant Enterobacteriaceae as causes of bloodstream infections in patients with hematologic malignancies. Leuk Lymphoma 54(4):799–806CrossRefPubMedGoogle Scholar
  18. 18.
    Horan TC, Andrus M, Dudeck MA (2008) CDC/NHSN surveillance definition of health care-associated infection and criteria for specific types of infections in the acute care setting. Am J Infect Control 36:309–332CrossRefPubMedGoogle Scholar
  19. 19.
    Clinical and Laboratory Standards Institute (CLSI) (2012) Performance standards for antimicrobial susceptibility testing; twenty-second informational supplement. CLSI document M100-S22. CLSI, WayneGoogle Scholar
  20. 20.
    U.S. Food and Drug Administration (FDA). Tygacil® label information. Available online at:
  21. 21.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2011) Breakpoint tables for interpretation of MICs and zone diameters, version 1.3, January 5, 2011. Available online at:
  22. 22.
    Mehta RL, Kellum JA, Shah SV, Molitoris BA, Ronco C, Warnock DG, Levin A; Acute Kidney Injury Network (2007) Acute Kidney Injury Network: report of an initiative to improve outcomes in acute kidney injury. Crit Care 11(2):R31CrossRefPubMedCentralPubMedGoogle Scholar
  23. 23.
    Velasco E, Byington R, Martins CA, Schirmer M, Dias LM, Gonçalves VM (2006) Comparative study of clinical characteristics of neutropenic and non-neutropenic adult cancer patients with bloodstream infections. Eur J Clin Microbiol Infect Dis 25(1):1–7CrossRefPubMedGoogle Scholar
  24. 24.
    Velasco E, Soares M, Byington R, Martins CA, Schirmer M, Dias LM, Gonçalves VM (2004) Prospective evaluation of the epidemiology, microbiology, and outcome of bloodstream infections in adult surgical cancer patients. Eur J Clin Microbiol Infect Dis 23(8):596–602CrossRefPubMedGoogle Scholar
  25. 25.
    Samonis G, Vardakas KZ, Maraki S, Tansarli GS, Dimopoulou D, Kofteridis DP, Andrianaki AM, Falagas ME (2013) A prospective study of characteristics and outcomes of bacteremia in patients with solid organ or hematologic malignancies. Support Care Cancer 21(9):2521–2526CrossRefPubMedGoogle Scholar
  26. 26.
    Lin YT, Liu CJ, Fung CP, Tzeng CH (2011) Nosocomial Klebsiella pneumoniae bacteraemia in adult cancer patients—characteristics of neutropenic and non-neutropenic patients. Scand J Infect Dis 43(8):603–608CrossRefPubMedGoogle Scholar
  27. 27.
    Liu SW, Chang HJ, Chia JH, Kuo AJ, Wu TL, Lee MH (2012) Outcomes and characteristics of ertapenem-nonsusceptible Klebsiella pneumoniae bacteremia at a university hospital in Northern Taiwan: a matched case–control study. J Microbiol Immunol Infect 45(2):113–119CrossRefPubMedGoogle Scholar
  28. 28.
    Kim SH, Kwon JC, Choi SM, Lee DG, Park SH, Choi JH, Yoo JH, Cho BS, Eom KS, Kim YJ, Kim HJ, Lee S, Min CK, Cho SG, Kim DW, Lee JW, Min WS (2013) Escherichia coli and Klebsiella pneumoniae bacteremia in patients with neutropenic fever: factors associated with extended-spectrum β-lactamase production and its impact on outcome. Ann Hematol 92(4):533–541CrossRefPubMedGoogle Scholar
  29. 29.
    Qureshi ZA, Paterson DL, Potoski BA, Kilayko MC, Sandovsky G, Sordillo E, Polsky B, Adams-Haduch JM, Doi Y (2012) Treatment outcome of bacteremia due to KPC-producing Klebsiella pneumoniae: superiority of combination antimicrobial regimens. Antimicrob Agents Chemother 56(4):2108–2113CrossRefPubMedCentralPubMedGoogle Scholar
  30. 30.
    Lübbert C, Becker-Rux D, Rodloff AC, Laudi S, Busch T, Bartels M, Kaisers UX (2013) Colonization of liver transplant recipients with KPC-producing Klebsiella pneumoniae is associated with high infection rates and excess mortality: a case–control analysis. Infection 42(2):309–316CrossRefPubMedGoogle Scholar
  31. 31.
    Dellinger RP, Levy MM, Rhodes A, Annane D, Gerlach H, Opal SM, Sevransky JE, Sprung CL, Douglas IS, Jaeschke R, Osborn TM, Nunnally ME, Townsend SR, Reinhart K, Kleinpell RM, Angus DC, Deutschman CS, Machado FR, Rubenfeld GD, Webb SA, Beale RJ, Vincent JL, Moreno R; Surviving Sepsis Campaign Guidelines Committee including the Pediatric Subgroup (2013) Surviving sepsis campaign: international guidelines for management of severe sepsis and septic shock: 2012. Crit Care Med 41(2):580–637CrossRefPubMedGoogle Scholar
  32. 32.
    Ghanem G, Hachem R, Jiang Y, Chemaly RF, Raad I (2007) Outcomes for and risk factors associated with vancomycin-resistant Enterococcus faecalis and vancomycin-resistant Enterococcus faecium bacteremia in cancer patients. Infect Control Hosp Epidemiol 28(9):1054–1059CrossRefPubMedGoogle Scholar
  33. 33.
    Huh K, Kang CI, Kim J, Cho SY, Ha YE, Joo EJ, Chung DR, Lee NY, Peck KR, Song JH (2013) Risk factors and treatment outcomes of bloodstream infection caused by extended-spectrum cephalosporin-resistant Enterobacter species in adults with cancer. Diagn Microbiol Infect Dis 78(2):172–177CrossRefPubMedGoogle Scholar
  34. 34.
    Ha YE, Kang CI, Cha MK, Park SY, Wi YM, Chung DR, Peck KR, Lee NY, Song JH (2013) Epidemiology and clinical outcomes of bloodstream infections caused by extended-spectrum β-lactamase-producing Escherichia coli in patients with cancer. Int J Antimicrob Agents 42(5):403–409CrossRefPubMedGoogle Scholar
  35. 35.
    Pankey GA, Ashcraft DS (2011) Detection of synergy using the combination of polymyxin B with either meropenem or rifampin against carbapenemase-producing Klebsiella pneumoniae. Diagn Microbiol Infect Dis 70(4):561–564CrossRefPubMedGoogle Scholar
  36. 36.
    Clock SA, Tabibi S, Alba L, Kubin CJ, Whittier S, Saiman L (2013) In vitro activity of doripenem alone and in multi-agent combinations against extensively drug-resistant Acinetobacter baumannii and Klebsiella pneumoniae. Diagn Microbiol Infect Dis 76(3):343–346CrossRefPubMedGoogle Scholar
  37. 37.
    Deris ZZ, Yu HH, Davis K, Soon RL, Jacob J, Ku CK, Poudyal A, Bergen PJ, Tsuji BT, Bulitta JB, Forrest A, Paterson DL, Velkov T, Li J, Nation RL (2012) The combination of colistin and doripenem is synergistic against Klebsiella pneumoniae at multiple inocula and suppresses colistin resistance in an in vitro pharmacokinetic/pharmacodynamic model. Antimicrob Agents Chemother 56(10):5103–5112CrossRefPubMedCentralPubMedGoogle Scholar
  38. 38.
    Bratu S, Tolaney P, Karumudi U, Quale J, Mooty M, Nichani S, Landman D (2005) Carbapenemase-producing Klebsiella pneumoniae in Brooklyn, NY: molecular epidemiology and in vitro activity of polymyxin B and other agents. J Antimicrob Chemother 56(1):128–132CrossRefPubMedGoogle Scholar
  39. 39.
    Landman D, Georgescu C, Martin DA, Quale J (2008) Polymyxins revisited. Clin Microbiol Rev 21(3):449–465CrossRefPubMedCentralPubMedGoogle Scholar
  40. 40.
    Kaiser RM, Castanheira M, Jones RN, Tenover F, Lynfield R (2013) Trends in Klebsiella pneumoniae carbapenemase-positive K. pneumoniae in US hospitals: report from the 2007–2009 SENTRY Antimicrobial Surveillance Program. Diagn Microbiol Infect Dis 76(3):356–360CrossRefPubMedGoogle Scholar
  41. 41.
    Sandri AM, Landersdorfer CB, Jacob J, Boniatti MM, Dalarosa MG, Falci DR, Behle TF, Bordinhão RC, Wang J, Forrest A, Nation RL, Li J, Zavascki AP (2013) Population pharmacokinetics of intravenous polymyxin B in critically ill patients: implications for selection of dosage regimens. Clin Infect Dis 57(4):524–531CrossRefPubMedGoogle Scholar
  42. 42.
    Sandri AM, Landersdorfer CB, Jacob J, Boniatti MM, Dalarosa MG, Falci DR, Behle TF, Saitovitch D, Wang J, Forrest A, Nation RL, Zavascki AP, Li J (2013) Pharmacokinetics of polymyxin B in patients on continuous venovenous haemodialysis. J Antimicrob Chemother 68(3):674–677CrossRefPubMedGoogle Scholar
  43. 43.
    Dubrovskaya Y, Chen TY, Scipione MR, Esaian D, Phillips MS, Papadopoulos J, Mehta SA (2013) Risk factors for treatment failure of polymyxin B monotherapy for carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother 57(11):5394–5397CrossRefPubMedCentralPubMedGoogle Scholar
  44. 44.
    Hussein K, Raz-Pasteur A, Finkelstein R, Neuberger A, Shachor-Meyouhas Y, Oren I, Kassis I (2013) Impact of carbapenem resistance on the outcome of patients’ hospital-acquired bacteraemia caused by Klebsiella pneumoniae. J Hosp Infect 83(4):307–313CrossRefPubMedGoogle Scholar
  45. 45.
    Tumbarello M, Spanu T, Caira M, Trecarichi EM, Laurenti L, Montuori E, Fianchi L, Leone F, Fadda G, Cauda R, Pagano L (2009) Factors associated with mortality in bacteremic patients with hematologic malignancies. Diagn Microbiol Infect Dis 64(3):320–326CrossRefPubMedGoogle Scholar
  46. 46.
    Bodro M, Gudiol C, Garcia-Vidal C, Tubau F, Contra A, Boix L, Domingo-Domenech E, Calvo M, Carratalà J (2014) Epidemiology, antibiotic therapy and outcomes of bacteremia caused by drug-resistant ESKAPE pathogens in cancer patients. Support Care Cancer 22(3):603–610CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • M. P. Freire
    • 1
  • L. C. Pierrotti
    • 1
  • H. H. C. Filho
    • 2
  • K. Y. Ibrahim
    • 1
  • A. S. G. K. Magri
    • 1
  • P. R. Bonazzi
    • 1
  • L. Hajar
    • 3
  • M. P. E. Diz
    • 4
  • J. Pereira
    • 5
  • P. M. Hoff
    • 2
    • 4
  • E. Abdala
    • 1
    • 6
  1. 1.Hospital Control Infection and Infectious Diseases Service, Instituto do Câncer do Estado de São PauloFaculdade de Medicina da Universidade de São PauloSão PauloBrazil
  2. 2.Division of Molecular Biology, Central Laboratory, Laboratório de Investigação Médica 03 (LIM-03, Laboratory for Medical Research 03)Hospital das Clínicas da Faculdade de Medicina da Universidade de São PauloSão PauloBrazil
  3. 3.Intensive Care Service, Instituto do Câncer do Estado de São Paulo, Hospital Control Infection and Infectious Diseases Service, Instituto do Câncer do Estado de São PauloFaculdade de Medicina da Universidade de São PauloSão PauloBrazil
  4. 4.Service of Clinical Oncology, Instituto do Câncer do Estado de São PauloFaculdade de Medicina da Universidade de São PauloSão PauloBrazil
  5. 5.Service of Hematology, Instituto do Câncer do Estado de São PauloFaculdade de Medicina da Universidade de São PauloSão PauloBrazil
  6. 6.Department of Infectious and Parasitic DiseasesFaculdade de Medicina da Universidade de São PauloSão PauloBrazil

Personalised recommendations