High rates of intestinal colonisation with fluoroquinolone-resistant ESBL-harbouring Enterobacteriaceae in hospitalised patients with antibiotic-associated diarrhoea

  • J. Vervoort
  • M. Gazin
  • M. Kazma
  • T. Kotlovsky
  • C. Lammens
  • Y. Carmeli
  • H. Goossens
  • S. Malhotra-Kumar
  • on behalf of the SATURN WP1 and MOSAR WP2 study groups
Article

Abstract

The purposes of this study were to investigate the intestinal carriage of extended-spectrum β-lactamase-harbouring Enterobacteriaceae (ESBL-EN) and associated fluoroquinolone resistance (FQ-R) in 120 hospitalised patients with antibiotic-associated diarrhoea, and to investigate a correlation between Clostridium difficile (C. difficile) infection and intestinal colonisation with ESBL-EN in these patients. Stool samples were screened for C. difficile infection by toxin A/B enzyme-linked immunosorbent assay (ELISA) and for the presence of enterobacterial isolates producing β-lactamases by plating on β-lactamase screening (BLSE) agar. Recovered isolates were confirmed pheno- and genotypically for the presence of ESBL genes (blaCTX-M, blaTEM, blaSHV) by the double-disc synergy test and polymerase chain reaction (PCR) sequencing, and tested for the presence of topoisomerase mutations (gyrA, parC) and plasmid-mediated quinolone resistance (PMQR) determinants [qnrA, qnrB, qnrS, qepA, aac(6′)-Ib-cr] by PCR sequencing. ESBL-EN were detected in 44/120 (37 %) stool samples. C. difficile-infected patients showed a significantly higher frequency of intestinal colonisation with ESBL-EN compared to C. difficile non-infected patients (62 % vs. 31 %, p = 0.008). Of the 73 ESBL-EN recovered, 46 (63 %) showed high-level FQ-R [ciprofloxacin minimum inhibitory concentration (MIC) ≥32 mg/L]. The largest group consisted of 21 blaCTX-M-15-harbouring Enterobacteriaceae (ciprofloxacin MIC ≥64 mg/L) with multiple topoisomerase mutations in gyrA and parC, in combination with co-carriage of aac(6′)-Ib-cr. Most of them were Escherichia coli isolates belonging to sequence types ST131 and ST410. We found remarkably high rates of intestinal colonisation with high-level FQ-R ESBL-EN in hospitalised patients with antibiotic-associated diarrhoea, especially among C. difficile-infected patients. These data underscore the need for stringent infection control to contain this potentially infectious and multidrug-resistant reservoir.

Supplementary material

10096_2014_2193_MOESM1_ESM.doc (40 kb)
ESM1(DOC 39 kb).

References

  1. 1.
    Pitout JD, Laupland KB (2008) Extended-spectrum beta-lactamase-producing Enterobacteriaceae: an emerging public-health concern. Lancet Infect Dis 8(3):159–166CrossRefPubMedGoogle Scholar
  2. 2.
    Carattoli A (2013) Plasmids and the spread of resistance. Int J Med Microbiol 303(6–7):298–304CrossRefPubMedGoogle Scholar
  3. 3.
    Vervoort J, Baraniak A, Gazin M, Sabirova J, Lammens C, Kazma M, Grabowska A, Izdebski R, Carmeli Y, Kumar-Singh S, Gniadkowski M, Goossens H, Malhotra-Kumar S (2012) Characterization of two new CTX-M-25-group extended-spectrum beta-lactamase variants identified in Escherichia coli isolates from Israel. PLoS One 7(9):e46329CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Robicsek A, Jacoby GA, Hooper DC (2006) The worldwide emergence of plasmid-mediated quinolone resistance. Lancet Infect Dis 6(10):629–640CrossRefPubMedGoogle Scholar
  5. 5.
    Bartlett JG, Chang TW, Gurwith M, Gorbach SL, Onderdonk AB (1978) Antibiotic-associated pseudomembranous colitis due to toxin-producing clostridia. N Engl J Med 298(10):531–534CrossRefPubMedGoogle Scholar
  6. 6.
    Gazin M, Paasch F, Goossens H, Malhotra-Kumar S (2012) Current trends in culture-based and molecular detection of extended-spectrum-beta-lactamase-harboring and carbapenem-resistant Enterobacteriaceae. J Clin Microbiol 50(4):1140–1146CrossRefPubMedPubMedCentralGoogle Scholar
  7. 7.
    Drieux L, Brossier F, Sougakoff W, Jarlier V (2008) Phenotypic detection of extended-spectrum beta-lactamase production in Enterobacteriaceae: review and bench guide. Clin Microbiol Infect 14(Suppl 1):90–103CrossRefPubMedGoogle Scholar
  8. 8.
    Malhotra-Kumar S, Wang S, Lammens C, Chapelle S, Goossens H (2003) Bacitracin-resistant clone of Streptococcus pyogenes isolated from pharyngitis patients in Belgium. J Clin Microbiol 41(11):5282–5284CrossRefPubMedPubMedCentralGoogle Scholar
  9. 9.
    Boyd DA, Tyler S, Christianson S, McGeer A, Muller MP, Willey BM, Bryce E, Gardam M, Nordmann P, Mulvey MR (2004) Complete nucleotide sequence of a 92-kilobase plasmid harboring the CTX-M-15 extended-spectrum beta-lactamase involved in an outbreak in long-term-care facilities in Toronto, Canada. Antimicrob Agents Chemother 48(10):3758–3764CrossRefPubMedPubMedCentralGoogle Scholar
  10. 10.
    Mabilat C, Goussard S, Sougakoff W, Spencer RC, Courvalin P (1990) Direct sequencing of the amplified structural gene and promoter for the extended-broad-spectrum beta-lactamase TEM-9 (RHH-1) of Klebsiella pneumoniae. Plasmid 23(1):27–34CrossRefPubMedGoogle Scholar
  11. 11.
    Paterson DL, Hujer KM, Hujer AM, Yeiser B, Bonomo MD, Rice LB, Bonomo RA (2003) Extended-spectrum beta-lactamases in Klebsiella pneumoniae bloodstream isolates from seven countries: dominance and widespread prevalence of SHV- and CTX-M-type beta-lactamases. Antimicrob Agents Chemother 47(11):3554–3560CrossRefPubMedPubMedCentralGoogle Scholar
  12. 12.
    Chmelnitsky I, Carmeli Y, Leavitt A, Schwaber MJ, Navon-Venezia S (2005) CTX-M-2 and a new CTX-M-39 enzyme are the major extended-spectrum beta-lactamases in multiple Escherichia coli clones isolated in Tel Aviv, Israel. Antimicrob Agents Chemother 49(11):4745–4750CrossRefPubMedPubMedCentralGoogle Scholar
  13. 13.
    Jeong SH, Bae IK, Kwon SB, Lee JH, Song JS, Jung HI, Sung KH, Jang SJ, Lee SH (2005) Dissemination of transferable CTX-M-type extended-spectrum beta-lactamase-producing Escherichia coli in Korea. J Appl Microbiol 98(4):921–927CrossRefPubMedGoogle Scholar
  14. 14.
    Pallecchi L, Riccobono E, Mantella A, Bartalesi F, Sennati S, Gamboa H, Gotuzzo E, Bartoloni A, Rossolini GM (2009) High prevalence of qnr genes in commensal enterobacteria from healthy children in Peru and Bolivia. Antimicrob Agents Chemother 53(6):2632–2635CrossRefPubMedPubMedCentralGoogle Scholar
  15. 15.
    Clinical and Laboratory Standards Institute (CLSI) (2014) Performance standards for antimicrobial susceptibility testing—24th informational supplement. CLSI document M100-S24. CLSI, Wayne, PA, USAGoogle Scholar
  16. 16.
    Dashti AA, Paton R, Amyes SG (2006) Linkage of ciprofloxacin resistance with a single genotypic cluster of Klebsiella pneumoniae. Int J Antimicrob Agents 27(1):73–76CrossRefPubMedGoogle Scholar
  17. 17.
    Mouneimné H, Robert J, Jarlier V, Cambau E (1999) Type II topoisomerase mutations in ciprofloxacin-resistant strains of Pseudomonas aeruginosa. Antimicrob Agents Chemother 43(1):62–66PubMedPubMedCentralGoogle Scholar
  18. 18.
    Rodríguez-Martínez JM, Velasco C, Pascual A, García I, Martínez-Martínez L (2006) Correlation of quinolone resistance levels and differences in basal and quinolone-induced expression from three qnrA-containing plasmids. Clin Microbiol Infect 12(5):440–445CrossRefPubMedGoogle Scholar
  19. 19.
    Weigel LM, Anderson GJ, Tenover FC (2002) DNA gyrase and topoisomerase IV mutations associated with fluoroquinolone resistance in Proteus mirabilis. Antimicrob Agents Chemother 46(8):2582–2587CrossRefPubMedPubMedCentralGoogle Scholar
  20. 20.
    Kim HB, Park CH, Kim CJ, Kim EC, Jacoby GA, Hooper DC (2009) Prevalence of plasmid-mediated quinolone resistance determinants over a 9-year period. Antimicrob Agents Chemother 53(2):639–645CrossRefPubMedPubMedCentralGoogle Scholar
  21. 21.
    Wu JJ, Ko WC, Tsai SH, Yan JJ (2007) Prevalence of plasmid-mediated quinolone resistance determinants QnrA, QnrB, and QnrS among clinical isolates of Enterobacter cloacae in a Taiwanese hospital. Antimicrob Agents Chemother 51(4):1223–1227CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC (2006) Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 50(11):3953–3955CrossRefPubMedPubMedCentralGoogle Scholar
  23. 23.
    Wirth T, Falush D, Lan R, Colles F, Mensa P, Wieler LH, Karch H, Reeves PR, Maiden MC, Ochman H, Achtman M (2006) Sex and virulence in Escherichia coli: an evolutionary perspective. Mol Microbiol 60(5):1136–1151CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Friedmann R, Raveh D, Zartzer E, Rudensky B, Broide E, Attias D, Yinnon AM (2009) Prospective evaluation of colonization with extended-spectrum beta-lactamase (ESBL)-producing enterobacteriaceae among patients at hospital admission and of subsequent colonization with ESBL-producing enterobacteriaceae among patients during hospitalization. Infect Control Hospital Epidemiol 30(6):534–542CrossRefGoogle Scholar
  25. 25.
    Vidal-Navarro L, Pfeiffer C, Bouziges N, Sotto A, Lavigne JP (2010) Faecal carriage of multidrug-resistant Gram-negative bacilli during a non-outbreak situation in a French university hospital. J Antimicrob Chemother 65(11):2455–2458CrossRefPubMedGoogle Scholar
  26. 26.
    Adler A, Gniadkowski M, Baraniak A, Izdebski R, Fiett J, Hryniewicz W, Malhotra-Kumar S, Goossens H, Lammens C, Lerman Y, Kazma M, Kotlovsky T, Carmeli Y (2012) Transmission dynamics of ESBL-producing Escherichia coli clones in rehabilitation wards at a tertiary care centre. Clin Microbiol Infect 18(12):E497–E505CrossRefPubMedGoogle Scholar
  27. 27.
    Peirano G, Richardson D, Nigrin J, McGeer A, Loo V, Toye B, Alfa M, Pienaar C, Kibsey P, Pitout JD (2010) High prevalence of ST131 isolates producing CTX-M-15 and CTX-M-14 among extended-spectrum-beta-lactamase-producing Escherichia coli isolates from Canada. Antimicrob Agents Chemother 54(3):1327–1330CrossRefPubMedPubMedCentralGoogle Scholar
  28. 28.
    Colodner R, Samra Z, Keller N, Sprecher H, Block C, Peled N, Lazarovitch T, Bardenstein R, Schwartz-Harari O, Carmeli Y (2007) First national surveillance of susceptibility of extended-spectrum beta-lactamase-producing Escherichia coli and Klebsiella spp. to antimicrobials in Israel. Diagn Microbiol Infect Dis 57(2):201–205CrossRefPubMedGoogle Scholar
  29. 29.
    Schwaber MJ, Navon-Venezia S, Schwartz D, Carmeli Y (2005) High levels of antimicrobial coresistance among extended-spectrum-beta-lactamase-producing Enterobacteriaceae. Antimicrob Agents Chemother 49(5):2137–2139CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Karah N, Poirel L, Bengtsson S, Sundqvist M, Kahlmeter G, Nordmann P, Sundsfjord A, Samuelsen Ø (2010) Plasmid-mediated quinolone resistance determinants qnr and aac(6′)-Ib-cr in Escherichia coli and Klebsiella spp. from Norway and Sweden. Diagn Microbiol Infect Dis 66(4):425–431CrossRefPubMedGoogle Scholar
  31. 31.
    Ruiz E, Sáenz Y, Zarazaga M, Rocha-Gracia R, Martínez-Martínez L, Arlet G, Torres C (2012) qnr, aac(6′)-Ib-cr and qepA genes in Escherichia coli and Klebsiella spp.: genetic environments and plasmid and chromosomal location. J Antimicrob Chemother 67(4):886–897CrossRefPubMedGoogle Scholar
  32. 32.
    Robicsek A, Strahilevitz J, Sahm DF, Jacoby GA, Hooper DC (2006) qnr prevalence in ceftazidime-resistant Enterobacteriaceae isolates from the United States. Antimicrob Agents Chemother 50(8):2872–2874CrossRefPubMedPubMedCentralGoogle Scholar
  33. 33.
    Dahmen S, Poirel L, Mansour W, Bouallègue O, Nordmann P (2010) Prevalence of plasmid-mediated quinolone resistance determinants in Enterobacteriaceae from Tunisia. Clin Microbiol Infect 16(7):1019–1023CrossRefPubMedGoogle Scholar
  34. 34.
    Szabó D, Kocsis B, Rókusz L, Szentandrássy J, Katona K, Kristóf K, Nagy K (2008) First detection of plasmid-mediated, quinolone resistance determinants qnrA, qnrB, qnrS and aac(6′)-Ib-cr in extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae in Budapest, Hungary. J Antimicrob Chemother 62(3):630–632CrossRefPubMedGoogle Scholar
  35. 35.
    Mavroidi A, Miriagou V, Liakopoulos A, Tzelepi E, Stefos A, Dalekos GN, Petinaki E (2012) Ciprofloxacin-resistant Escherichia coli in Central Greece: mechanisms of resistance and molecular identification. BMC Infect Dis 12:371CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Novais Â, Viana D, Baquero F, Martínez-Botas J, Cantón R, Coque TM (2012) Contribution of IncFII and broad-host IncA/C and IncN plasmids to the local expansion and diversification of phylogroup B2 Escherichia coli ST131 clones carrying blaCTX-M-15 and qnrS1 genes. Antimicrob Agents Chemother 56(5):2763–2766CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Peirano G, Pitout JD (2014) Fluoroquinolone-resistant Escherichia coli sequence type 131 isolates causing bloodstream infections in a Canadian region with a centralized laboratory system: rapid emergence of the H30-Rx sublineage. Antimicrob Agents Chemother 58(5):2699–2703CrossRefPubMedPubMedCentralGoogle Scholar
  38. 38.
    Bignardi GE (1998) Risk factors for Clostridium difficile infection. J Hosp Infect 40(1):1–15CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. Vervoort
    • 1
  • M. Gazin
    • 1
  • M. Kazma
    • 2
  • T. Kotlovsky
    • 2
  • C. Lammens
    • 1
  • Y. Carmeli
    • 2
  • H. Goossens
    • 1
  • S. Malhotra-Kumar
    • 1
    • 3
  • on behalf of the SATURN WP1 and MOSAR WP2 study groups
  1. 1.Department of Medical Microbiology, Vaccine & Infectious Disease InstituteUniversity of AntwerpAntwerpBelgium
  2. 2.Division of Epidemiology and Laboratory for Molecular Epidemiology and Antibiotic Research, Tel Aviv Sourasky Medical Center, Sackler Faculty of MedicineTel Aviv UniversityTel AvivIsrael
  3. 3.Department of Medical Microbiology, Campus Drie EikenUniversity of AntwerpWilrijkBelgium

Personalised recommendations