Skip to main content

Advertisement

Log in

Abstract

Highly active antiretroviral therapy (HAART) is the only approach for human immunodeficiency virus (HIV) infection treatment at present. Although HAART is effective in controlling the progression of infection, it is impossible to eradicate the virus from patients. The patients have to live with the virus. Alternative ways for the cure of HIV infection have been investigated. As the major co-receptor for HIV-1 infection, C-C motif chemokine receptor 5 (CCR5) is naturally an ideal target for anti-HIV research. The first CCR5 antagonist, maraviroc, has been approved for the treatment of HIV infection. Several other CCR5 antagonists are in clinical trials. CCR5 delta32 is a natural genotype, conferring resistance to CCR5 using HIV-1 strains. Gene therapy research targeting this mutant has been conducted for HIV infection treatment. A Berlin patient has been cured of HIV infection by the transplantation of stem cells from a CCR5 delta32 genotype donor. The infusion of an engineered zinc finger nuclease (ZFN)-modified autologous cluster of differentiation 4 (CD4) T cells has been proved to be a promising direction recently. In this study, the anti-HIV research targeting CCR5 is summarized, including CCR5 antagonist development, stem cell transplantation, and gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Briand G, Barbeau B, Tremblay M (1997) Binding of HIV-1 to its receptor induces tyrosine phosphorylation of several CD4-associated proteins, including the phosphatidylinositol 3-kinase. Virology 228(2):171–179

    Article  PubMed  CAS  Google Scholar 

  2. Mörner A, Björndal A, Albert J, Kewalramani VN, Littman DR, Inoue R, Thorstensson R, Fenyö EM, Björling E (1999) Primary human immunodeficiency virus type 2 (HIV-2) isolates, like HIV-1 isolates, frequently use CCR5 but show promiscuity in coreceptor usage. J Virol 73(3):2343–2349

    PubMed  PubMed Central  Google Scholar 

  3. Struyf F, Thoelen I, Charlier N, Keyaerts E, Van der Donck I, Wuu J, Van Ranst M (2000) Prevalence of CCR5 and CCR2 HIV-coreceptor gene polymorphisms in Belgium. Hum Hered 50(5):304–307

    Article  PubMed  CAS  Google Scholar 

  4. Frade JM, Llorente M, Mellado M, Alcamí J, Gutiérrez-Ramos JC, Zaballos A, Real G, Martínez-A C (1997) The amino-terminal domain of the CCR2 chemokine receptor acts as coreceptor for HIV-1 infection. J Clin Invest 100(3):497–502

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  5. Lallos LB, Laal S, Hoxie JA, Zolla-Pazner S, Bandres JC (1999) Exclusion of HIV coreceptors CXCR4, CCR5, and CCR3 from the HIV envelope. AIDS Res Hum Retroviruses 15(10):895–897

    Article  PubMed  CAS  Google Scholar 

  6. Connor RI, Sheridan KE, Ceradini D, Choe S, Landau NR (1997) Change in coreceptor use correlates with disease progression in HIV-1-infected individuals. J Exp Med 185(4):621–628

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  7. Choe H, Farzan M, Sun Y, Sullivan N, Rollins B, Ponath PD, Wu L, Mackay CR, LaRosa G, Newman W, Gerard N, Gerard C, Sodroski J (1996) The beta-chemokine receptors CCR3 and CCR5 facilitate infection by primary HIV-1 isolates. Cell 85(7):1135–1148

    Article  PubMed  CAS  Google Scholar 

  8. Zhao W, Wu YW, Liu W, Yao WH, Zhao H (2005) Coreceptors CCR5 and CXCR4 expressions on peripheral blood T lymphocytes in HIV/AIDS patients. Zhonghua Nan Ke Xue 11(8):574–576, 580

    PubMed  CAS  Google Scholar 

  9. Lapham CK, Zaitseva MB, Lee S, Romanstseva T, Golding H (1999) Fusion of monocytes and macrophages with HIV-1 correlates with biochemical properties of CXCR4 and CCR5. Nat Med 5(3):303–308

    Article  PubMed  CAS  Google Scholar 

  10. Mummidi S, Ahuja SS, McDaniel BL, Ahuja SK (1997) The human CC chemokine receptor 5 (CCR5) gene. Multiple transcripts with 5′-end heterogeneity, dual promoter usage, and evidence for polymorphisms within the regulatory regions and noncoding exons. J Biol Chem 272(49):30662–30671

    Article  PubMed  CAS  Google Scholar 

  11. Mummidi S, Bamshad M, Ahuja SS, Gonzalez E, Feuillet PM, Begum K, Galvis MC, Kostecki V, Valente AJ, Murthy KK, Haro L, Dolan MJ, Allan JS, Ahuja SK (2000) Evolution of human and non-human primate CC chemokine receptor 5 gene and mRNA. Potential roles for haplotype and mRNA diversity, differential haplotype-specific transcriptional activity, and altered transcription factor binding to polymorphic nucleotides in the pathogenesis of HIV-1 and simian immunodeficiency virus. J Biol Chem 275(25):18946–18961

    Article  PubMed  CAS  Google Scholar 

  12. Wierda RJ, Kuipers HF, van Eggermond MC, Benard A, van Leeuwen JC, Carluccio S, Geutskens SB, Jukema JW, Marquez VE, Quax PH, van den Elsen PJ (2012) Epigenetic control of CCR5 transcript levels in immune cells and modulation by small molecules inhibitors. J Cell Mol Med 16(8):1866–1877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  13. Dean M, Carrington M, Winkler C, Huttley GA, Smith MW, Allikmets R, Goedert JJ, Buchbinder SP, Vittinghoff E, Gomperts E, Donfield S, Vlahov D, Kaslow R, Saah A, Rinaldo C, Detels R, O’Brien SJ (1996) Genetic restriction of HIV-1 infection and progression to AIDS by a deletion allele of the CKR5 structural gene. Hemophilia Growth and Development Study, Multicenter AIDS Cohort Study, Multicenter Hemophilia Cohort Study, San Francisco City Cohort, ALIVE Study. Science 273(5283):1856–1862

    Article  PubMed  CAS  Google Scholar 

  14. Liu R, Paxton WA, Choe S, Ceradini D, Martin SR, Horuk R, MacDonald ME, Stuhlmann H, Koup RA, Landau NR (1996) Homozygous defect in HIV-1 coreceptor accounts for resistance of some multiply-exposed individuals to HIV-1 infection. Cell 86(3):367–377

    Article  PubMed  CAS  Google Scholar 

  15. Martinson JJ, Chapman NH, Rees DC, Liu YT, Clegg JB (1997) Global distribution of the CCR5 gene 32-basepair deletion. Nat Genet 16(1):100–103

    Article  PubMed  CAS  Google Scholar 

  16. Novembre J, Galvani AP, Slatkin M (2005) The geographic spread of the CCR5 Delta32 HIV-resistance allele. PLoS Biol 3(11):e339

    Article  PubMed  PubMed Central  Google Scholar 

  17. Su B, Sun G, Lu D, Xiao J, Hu F, Chakraborty R, Deka R, Jin L (2000) Distribution of three HIV-1 resistance-conferring polymorphisms (SDF1-3′A, CCR2-641, and CCR5-delta32) in global populations. Eur J Hum Genet 8(12):975–979

    Article  PubMed  CAS  Google Scholar 

  18. Mummidi S, Ahuja SS, Gonzalez E, Anderson SA, Santiago EN, Stephan KT, Craig FE, O’Connell P, Tryon V, Clark RA, Dolan MJ, Ahuja SK (1998) Genealogy of the CCR5 locus and chemokine system gene variants associated with altered rates of HIV-1 disease progression. Nat Med 4(7):786–793

    Article  PubMed  CAS  Google Scholar 

  19. Picton AC, Shalekoff S, Paximadis M, Tiemessen CT (2012) Marked differences in CCR5 expression and activation levels in two South African populations. Immunology 136(4):397–407

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Gonzalez E, Bamshad M, Sato N, Mummidi S, Dhanda R, Catano G, Cabrera S, McBride M, Cao XH, Merrill G, O’Connell P, Bowden DW, Freedman BI, Anderson SA, Walter EA, Evans JS, Stephan KT, Clark RA, Tyagi S, Ahuja SS, Dolan MJ, Ahuja SK (1999) Race-specific HIV-1 disease-modifying effects associated with CCR5 haplotypes. Proc Natl Acad Sci U S A 96(21):12004–12009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  21. Catano G, Chykarenko ZA, Mangano A, Anaya JM, He W, Smith A, Bologna R, Sen L, Clark RA, Lloyd A, Shostakovich-Koretskaya L, Ahuja SK (2011) Concordance of CCR5 genotypes that influence cell-mediated immunity and HIV-1 disease progression rates. J Infect Dis 203(2):263–272

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Malhotra R, Hu L, Song W, Brill I, Mulenga J, Allen S, Hunter E, Shrestha S, Tang J, Kaslow RA (2011) Association of chemokine receptor gene (CCR2–CCR5) haplotypes with acquisition and control of HIV-1 infection in Zambians. Retrovirology 8:22

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  23. Oppermann M (2004) Chemokine receptor CCR5: insights into structure, function, and regulation. Cell Signal 16(11):1201–1210

    Article  PubMed  CAS  Google Scholar 

  24. Menten P, Struyf S, Schutyser E, Wuyts A, De Clercq E, Schols D, Proost P, Van Damme J (1999) The LD78beta isoform of MIP-1alpha is the most potent CCR5 agonist and HIV-1-inhibiting chemokine. J Clin Invest 104(4):R1–R5

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  25. Mack M, Luckow B, Nelson PJ, Cihak J, Simmons G, Clapham PR, Signoret N, Marsh M, Stangassinger M, Borlat F, Wells TN, Schlöndorff D, Proudfoot AE (1998) Aminooxypentane-RANTES induces CCR5 internalization but inhibits recycling: a novel inhibitory mechanism of HIV infectivity. J Exp Med 187(8):1215–1224

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Guergnon J, Combadière C (2012) Role of chemokines polymorphisms in diseases. Immunol Lett 145(1–2):15–22

    Article  PubMed  CAS  Google Scholar 

  27. Simmons G, Clapham PR, Picard L, Offord RE, Rosenkilde MM, Schwartz TW, Buser R, Wells TN, Proudfoot AE (1997) Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science 276(5310):276–279

    Article  PubMed  CAS  Google Scholar 

  28. Baba M, Nishimura O, Kanzaki N, Okamoto M, Sawada H, Iizawa Y, Shiraishi M, Aramaki Y, Okonogi K, Ogawa Y, Meguro K, Fujino M (1999) A small-molecule, nonpeptide CCR5 antagonist with highly potent and selective anti-HIV-1 activity. Proc Natl Acad Sci U S A 96(10):5698–5703

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  29. Tokuyama H, Ueha S, Kurachi M, Matsushima K, Moriyasu F, Blumberg RS, Kakimi K (2005) The simultaneous blockade of chemokine receptors CCR2, CCR5 and CXCR3 by a non-peptide chemokine receptor antagonist protects mice from dextran sodium sulfate-mediated colitis. Int Immunol 17(8):1023–1034

    Article  PubMed  CAS  Google Scholar 

  30. Takashima K, Miyake H, Kanzaki N, Tagawa Y, Wang X, Sugihara Y, Iizawa Y, Baba M (2005) Highly potent inhibition of human immunodeficiency virus type 1 replication by TAK-220, an orally bioavailable small-molecule CCR5 antagonist. Antimicrob Agents Chemother 49(8):3474–3482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  31. Imamura S, Ichikawa T, Nishikawa Y, Kanzaki N, Takashima K, Niwa S, Iizawa Y, Baba M, Sugihara Y (2006) Discovery of a piperidine-4-carboxamide CCR5 antagonist (TAK-220) with highly potent Anti-HIV-1 activity. J Med Chem 49(9):2784–2793

    Article  PubMed  CAS  Google Scholar 

  32. Nishikawa M, Takashima K, Nishi T, Furuta RA, Kanzaki N, Yamamoto Y, Fujisawa J (2005) Analysis of binding sites for the new small-molecule CCR5 antagonist TAK-220 on human CCR5. Antimicrob Agents Chemother 49(11):4708–4715

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Tremblay CL, Giguel F, Guan Y, Chou TC, Takashima K, Hirsch MS (2005) TAK-220, a novel small-molecule CCR5 antagonist, has favorable anti-human immunodeficiency virus interactions with other antiretrovirals in vitro. Antimicrob Agents Chemother 49(8):3483–3485

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  34. Blanpain C, Migeotte I, Lee B, Vakili J, Doranz BJ, Govaerts C, Vassart G, Doms RW, Parmentier M (1999) CCR5 binds multiple CC-chemokines: MCP-3 acts as a natural antagonist. Blood 94(6):1899–1905

    PubMed  CAS  Google Scholar 

  35. Palani A, Shapiro S, Clader JW, Greenlee WJ, Cox K, Strizki J, Endres M, Baroudy BM (2001) Discovery of 4-[(Z)-(4-bromophenyl)-(ethoxyimino)methyl]-1′-[(2,4-dimethyl-3-pyridinyl)carbonyl]-4′-methyl-1,4′-bipiperidine N-oxide (SCH 351125): an orally bioavailable human CCR5 antagonist for the treatment of HIV infection. J Med Chem 44(21):3339–3342

    Article  PubMed  CAS  Google Scholar 

  36. Tagat JR, Steensma RW, McCombie SW, Nazareno DV, Lin SI, Neustadt BR, Cox K, Xu S, Wojcik L, Murray MG, Vantuno N, Baroudy BM, Strizki JM (2001) Piperazine-based CCR5 antagonists as HIV-1 inhibitors. II. Discovery of 1-[(2,4-dimethyl-3-pyridinyl)carbonyl]-4-methyl-4-[3(S)-methyl-4-[1(S)-[4-(trifluoromethyl)phenyl]ethyl]-1-piperazinyl]-piperidine N1-oxide (Sch-350634), an orally bioavailable, potent CCR5 antagonist. J Med Chem 44(21):3343–3346

    Article  PubMed  CAS  Google Scholar 

  37. Strizki JM, Xu S, Wagner NE, Wojcik L, Liu J, Hou Y, Endres M, Palani A, Shapiro S, Clader JW, Greenlee WJ, Tagat JR, McCombie S, Cox K, Fawzi AB, Chou CC, Pugliese-Sivo C, Davies L, Moreno ME, Ho DD, Trkola A, Stoddart CA, Moore JP, Reyes GR, Baroudy BM (2001) SCH-C (SCH 351125), an orally bioavailable, small molecule antagonist of the chemokine receptor CCR5, is a potent inhibitor of HIV-1 infection in vitro and in vivo. Proc Natl Acad Sci U S A 98(22):12718–12723

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Tremblay CL, Giguel F, Kollmann C, Guan Y, Chou TC, Baroudy BM, Hirsch MS (2002) Anti-human immunodeficiency virus interactions of SCH-C (SCH 351125), a CCR5 antagonist, with other antiretroviral agents in vitro. Antimicrob Agents Chemother 46(5):1336–1339

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  39. Palani A, Shapiro S, Clader JW, Greenlee WJ, Blythin D, Cox K, Wagner NE, Strizki J, Baroudy BM, Dan N (2003) Biological evaluation and interconversion studies of rotamers of SCH 351125, an orally bioavailable CCR5 antagonist. Bioorg Med Chem Lett 13(4):705–708

    Article  PubMed  CAS  Google Scholar 

  40. Ghosal A, Chowdhury SK, Gupta S, Yuan Y, Iannucci R, Zhang H, Zbaida S, Patrick JE, Alton KB (2005) Identification of human liver cytochrome P450 enzymes involved in the metabolism of SCH 351125, a CCR5 antagonist. Xenobiotica 35(5):405–417

    Article  PubMed  CAS  Google Scholar 

  41. Tagat JR, McCombie SW, Nazareno D, Labroli MA, Xiao Y, Steensma RW, Strizki JM, Baroudy BM, Cox K, Lachowicz J, Varty G, Watkins R (2004) Piperazine-based CCR5 antagonists as HIV-1 inhibitors. IV. Discovery of 1-[(4,6-dimethyl-5-pyrimidinyl)carbonyl]-4-[4-[2-methoxy-1(R)-4-(trifluoromethyl)phenyl]ethyl-3(S)-methyl-1-piperazinyl]-4-methylpiperidine (Sch-417690/Sch-D), a potent, highly selective, and orally bioavailable CCR5 antagonist. J Med Chem 47(10):2405–2408

    Article  PubMed  CAS  Google Scholar 

  42. Strizki JM, Tremblay C, Xu S, Wojcik L, Wagner N, Gonsiorek W, Hipkin RW, Chou CC, Pugliese-Sivo C, Xiao Y, Tagat JR, Cox K, Priestley T, Sorota S, Huang W, Hirsch M, Reyes GR, Baroudy BM (2005) Discovery and characterization of vicriviroc (SCH 417690), a CCR5 antagonist with potent activity against human immunodeficiency virus type 1. Antimicrob Agents Chemother 49(12):4911–4919

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Ghosal A, Ramanathan R, Yuan Y, Hapangama N, Chowdhury SK, Kishnani NS, Alton KB (2007) Identification of human liver cytochrome P450 enzymes involved in biotransformation of vicriviroc, a CCR5 receptor antagonist. Drug Metab Dispos 35(12):2186–2195

    Article  PubMed  CAS  Google Scholar 

  44. Schürmann D, Fätkenheuer G, Reynes J, Michelet C, Raffi F, van Lier J, Caceres M, Keung A, Sansone-Parsons A, Dunkle LM, Hoffmann C (2007) Antiviral activity, pharmacokinetics and safety of vicriviroc, an oral CCR5 antagonist, during 14-day monotherapy in HIV-infected adults. AIDS 21(10):1293–1299

    Article  PubMed  Google Scholar 

  45. Abel S, van der Ryst E, Rosario MC, Ridgway CE, Medhurst CG, Taylor-Worth RJ, Muirhead GJ (2008) Assessment of the pharmacokinetics, safety and tolerability of maraviroc, a novel CCR5 antagonist, in healthy volunteers. Br J Clin Pharmacol 65(Suppl 1):5–18

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  46. Crawford KW, Li C, Keung A, Su Z, Hughes MD, Greaves W, Kuritzkes D, Gulick R, Flexner C; ACTG A5211 Study Team (2010) Pharmacokinetic/pharmacodynamic modeling of the antiretroviral activity of the CCR5 antagonist Vicriviroc in treatment experienced HIV-infected subjects (ACTG protocol 5211). J Acquir Immune Defic Syndr 53(5):598–605

    PubMed  CAS  PubMed Central  Google Scholar 

  47. Yarovinsky F, Andersen JF, King LR, Caspar P, Aliberti J, Golding H, Sher A (2004) Structural determinants of the anti-HIV activity of a CCR5 antagonist derived from Toxoplasma gondii. J Biol Chem 279(51):53635–53642

    Article  PubMed  CAS  Google Scholar 

  48. Lalezari J, Thompson M, Kumar P, Piliero P, Davey R, Patterson K, Shachoy-Clark A, Adkison K, Demarest J, Lou Y, Berrey M, Piscitelli S (2005) Antiviral activity and safety of 873140, a novel CCR5 antagonist, during short-term monotherapy in HIV-infected adults. AIDS 19(14):1443–1448

    Article  PubMed  CAS  Google Scholar 

  49. Nakata H, Maeda K, Miyakawa T, Shibayama S, Matsuo M, Takaoka Y, Ito M, Koyanagi Y, Mitsuya H (2005) Potent anti-R5 human immunodeficiency virus type 1 effects of a CCR5 antagonist, AK602/ONO4128/GW873140, in a novel human peripheral blood mononuclear cell nonobese diabetic-SCID, interleukin-2 receptor gamma-chain-knocked-out AIDS mouse model. J Virol 79(4):2087–2096

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  50. Li G, Watson K, Buckheit RW, Zhang Y (2007) Total synthesis of anibamine, a novel natural product as a chemokine receptor CCR5 antagonist. Org Lett 9(10):2043–2046

    Article  PubMed  CAS  Google Scholar 

  51. Liu Y, Zhou E, Yu K, Zhu J, Zhang Y, Xie X, Li J, Jiang H (2008) Discovery of a novel CCR5 antagonist lead compound through fragment assembly. Molecules 13(10):2426–2441

    Article  PubMed  CAS  Google Scholar 

  52. Vangelista L, Secchi M, Liu X, Bachi A, Jia L, Xu Q, Lusso P (2010) Engineering of Lactobacillus jensenii to secrete RANTES and a CCR5 antagonist analogue as live HIV-1 blockers. Antimicrob Agents Chemother 54(7):2994–3001

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Zheng C, Cao G, Xia M, Feng H, Glenn J, Anand R, Zhang K, Huang T, Wang A, Kong L, Li M, Galya L, Hughes RO, Devraj R, Morton PA, Rogier DJ, Covington M, Baribaud F, Shin N, Scherle P, Diamond S, Yeleswaram S, Vaddi K, Newton R, Hollis G, Friedman S, Metcalf B, Xue CB (2011) Discovery of INCB10820/PF-4178903, a potent, selective, and orally bioavailable dual CCR2 and CCR5 antagonist. Bioorg Med Chem Lett 21(5):1442–1446

    Article  PubMed  CAS  Google Scholar 

  54. Patel K, Dixit VD, Lee JH, Kim JW, Schaffer EM, Nguyen D, Taub DD (2012) The GHS-R blocker D-[Lys3] GHRP-6 serves as CCR5 chemokine receptor antagonist. Int J Med Sci 9(1):51–58

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Kang Y, Wu Z, Lau TC, Lu X, Liu L, Cheung AK, Tan Z, Ng J, Liang J, Wang H, Li S, Zheng B, Li B, Chen L, Chen Z (2012) CCR5 antagonist TD-0680 uses a novel mechanism for enhanced potency against HIV-1 entry, cell-mediated infection, and a resistant variant. J Biol Chem 287(20):16499–16509

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Fätkenheuer G, Pozniak AL, Johnson MA, Plettenberg A, Staszewski S, Hoepelman AI, Saag MS, Goebel FD, Rockstroh JK, Dezube BJ, Jenkins TM, Medhurst C, Sullivan JF, Ridgway C, Abel S, James IT, Youle M, van der Ryst E (2005) Efficacy of short-term monotherapy with maraviroc, a new CCR5 antagonist, in patients infected with HIV-1. Nat Med 11(11):1170–1172

    Article  PubMed  Google Scholar 

  57. Meanwell NA, Kadow JF (2007) Maraviroc, a chemokine CCR5 receptor antagonist for the treatment of HIV infection and AIDS. Curr Opin Investig Drugs 8(8):669–681

    PubMed  CAS  Google Scholar 

  58. [No authors listed] (2007) FDA notifications. Maraviroc approved as a CCR5 co-receptor antagonist. AIDS Alert 22(9):103

    Google Scholar 

  59. Kümmerle T, Lehmann C, Hartmann P, Wyen C, Fätkenheuer G (2009) Vicriviroc: a CCR5 antagonist for treatment-experienced patients with HIV-1 infection. Expert Opin Investig Drugs 18(11):1773–1785

    Article  PubMed  Google Scholar 

  60. Klibanov OM (2009) Vicriviroc, a CCR5 receptor antagonist for the potential treatment of HIV infection. Curr Opin Investig Drugs 10(8):845–859

    PubMed  CAS  Google Scholar 

  61. Lieberman-Blum SS, Fung HB, Bandres JC (2008) Maraviroc: a CCR5-receptor antagonist for the treatment of HIV-1 infection. Clin Ther 30(7):1228–1250

    Article  PubMed  CAS  Google Scholar 

  62. Yost R, Pasquale TR, Sahloff EG (2009) Maraviroc: a coreceptor CCR5 antagonist for management of HIV infection. Am J Health Syst Pharm 66(8):715–726

    Article  PubMed  CAS  Google Scholar 

  63. Sayana S, Khanlou H (2009) Maraviroc: a new CCR5 antagonist. Expert Rev Anti Infect Ther 7(1):9–19

    Article  PubMed  CAS  Google Scholar 

  64. Asano S, Gavrilyuk J, Burton DR, Barbas CF 3rd (2014) Preparation and activities of macromolecule conjugates of the CCR5 antagonist Maraviroc. ACS Med Chem Lett 5(2):133–137

    Article  PubMed  CAS  Google Scholar 

  65. Zorn F (2011) CCR5 antagonist Maraviroc: effective and well tolerated. “A very promising substance”. MMW Fortschr Med 153(18):30–31

    PubMed  Google Scholar 

  66. Vasil’ev AV, Kazennova EV, Bobkova MR (2011) Analysis of the prevalence of CCR5 coreceptor antagonist resistance mutations among HIV-1 variants in Russia. Vopr Virusol 56(3):32–37

    PubMed  Google Scholar 

  67. Caseiro MM, Nelson M, Diaz RS, Gathe J, de Andrade Neto JL, Slim J, Solano A, Netto EM, Mak C, Shen J, Greaves W, Dunkle LM, Vilchez RA, Zeinecker J (2012) Vicriviroc plus optimized background therapy for treatment-experienced subjects with CCR5 HIV-1 infection: final results of two randomized phase III trials. J Infect 65(4):326–335

    Article  PubMed  Google Scholar 

  68. Katzenstein TL, Eugen-Olsen J, Hofmann B, Benfield T, Pedersen C, Iversen AK, Sørensen AM, Garred P, Koppelhus U, Svejgaard A, Gerstoft J (1997) HIV-infected individuals with the CCR delta32/CCR5 genotype have lower HIV RNA levels and higher CD4 cell counts in the early years of the infection than do patients with the wild type. Copenhagen AIDS Cohort Study Group. J Acquir Immune Defic Syndr Hum Retrovirol 16(1):10–14

    Article  PubMed  CAS  Google Scholar 

  69. Walli R, Reinhart B, Luckow B, Lederer E, Loch O, Malo A, Wank R, Schlöndorff D, Goebel FD (1998) HIV-1-infected long-term slow progressors heterozygous for delta32-CCR5 show significantly lower plasma viral load than wild-type slow progressors. J Acquir Immune Defic Syndr Hum Retrovirol 18(3):229–233

    Article  PubMed  CAS  Google Scholar 

  70. Marmor M, Sheppard HW, Donnell D, Bozeman S, Celum C, Buchbinder S, Koblin B, Seage GR 3rd; HIV Network for Prevention Trials Vaccine Preparedness Protocol Team (2001) Homozygous and heterozygous CCR5-Delta32 genotypes are associated with resistance to HIV infection. J Acquir Immune Defic Syndr 27(5):472–481

    Article  PubMed  CAS  Google Scholar 

  71. Laurichesse JJ, Persoz A, Theodorou I, Rouzioux C, Delfraissy JF, Meyer L (2007) Improved virological response to highly active antiretroviral therapy in HIV-1-infected patients carrying the CCR5 Delta32 deletion. HIV Med 8(4):213–219

    Article  PubMed  CAS  Google Scholar 

  72. Faulds D, Horuk R (1997) Possible mechanism for the generation of the HIV-1-resistant form of the CCR5 delta32 mutant chemokine receptor. Curr Biol 7(9):R529–R530

    Article  PubMed  CAS  Google Scholar 

  73. Allers K, Hütter G, Hofmann J, Loddenkemper C, Rieger K, Thiel E, Schneider T (2011) Evidence for the cure of HIV infection by CCR5Delta32/Delta32 stem cell transplantation. Blood 117(10):2791–2799

    Article  PubMed  CAS  Google Scholar 

  74. Hütter G, Nowak D, Mossner M, Ganepola S, Müssig A, Allers K, Schneider T, Hofmann J, Kücherer C, Blau O, Blau IW, Hofmann WK, Thiel E (2009) Long-term control of HIV by CCR5 Delta32/Delta32 stem-cell transplantation. N Engl J Med 360(7):692–698

    Article  PubMed  Google Scholar 

  75. Huzicka I (1999) Could bone marrow transplantation cure AIDS?: review. Med Hypotheses 52(3):247–257

    Article  PubMed  CAS  Google Scholar 

  76. Lamothe B, Joshi S (2000) Current developments and future prospects for HIV gene therapy using interfering RNA-based strategies. Front Biosci 5:D527–D555

    Article  PubMed  CAS  Google Scholar 

  77. Chung J, DiGiusto DL, Rossi JJ (2013) Combinatorial RNA-based gene therapy for the treatment of HIV/AIDS. Expert Opin Biol Ther 13(3):437–445

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  78. Dorman N, Lever AM (2001) RNA-based gene therapy for HIV infection. HIV Med 2(2):114–122

    Article  PubMed  CAS  Google Scholar 

  79. DiGiusto DL, Krishnan A, Li L, Li H, Li S, Rao A, Mi S, Yam P, Stinson S, Kalos M, Alvarnas J, Lacey SF, Yee JK, Li M, Couture L, Hsu D, Forman SJ, Rossi JJ, Zaia JA (2010) RNA-based gene therapy for HIV with lentiviral vector-modified CD34(+) cells in patients undergoing transplantation for AIDS-related lymphoma. Sci Trans Med 2(36):36ra43

    Article  Google Scholar 

  80. Zeller SJ, Kumar P (2011) RNA-based gene therapy for the treatment and prevention of HIV: from bench to bedside. Yale J Biol Med 84(3):301–309

    PubMed  PubMed Central  Google Scholar 

  81. Manjunath N, Yi G, Dang Y, Shankar P (2013) Newer gene editing technologies toward HIV gene therapy. Viruses 5(11):2748–2766

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Mitsuyasu RT, Merigan TC, Carr A, Zack JA, Winters MA, Workman C, Bloch M, Lalezari J, Becker S, Thornton L, Akil B, Khanlou H, Finlayson R, McFarlane R, Smith DE, Garsia R, Ma D, Law M, Murray JM, von Kalle C, Ely JA, Patino SM, Knop AE, Wong P, Todd AV, Haughton M, Fuery C, Macpherson JL, Symonds GP, Evans LA, Pond SM, Cooper DA (2009) Phase 2 gene therapy trial of an anti-HIV ribozyme in autologous CD34+ cells. Nat Med 15(3):285–292

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  83. Samson M, Libert F, Doranz BJ, Rucker J, Liesnard C, Farber CM, Saragosti S, Lapoumeroulie C, Cognaux J, Forceille C, Muyldermans G, Verhofstede C, Burtonboy G, Georges M, Imai T, Rana S, Yi Y, Smyth RJ, Collman RG, Doms RW, Vassart G, Parmentier M (1996) Resistance to HIV-1 infection in Caucasian individuals bearing mutant alleles of the CCR-5 chemokine receptor gene. Nature 382(6593):722–725

    Article  PubMed  CAS  Google Scholar 

  84. Perez EE, Wang J, Miller JC, Jouvenot Y, Kim KA, Liu O, Wang N, Lee G, Bartsevich VV, Lee YL, Guschin DY, Rupniewski I, Waite AJ, Carpenito C, Carroll RG, Orange JS, Urnov FD, Rebar EJ, Ando D, Gregory PD, Riley JL, Holmes MC, June CH (2008) Establishment of HIV-1 resistance in CD4+ T cells by genome editing using zinc-finger nucleases. Nat Biotechnol 26(7):808–816

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Holt N, Wang J, Kim K, Friedman G, Wang X, Taupin V, Crooks GM, Kohn DB, Gregory PD, Holmes MC, Cannon PM (2010) Human hematopoietic stem/progenitor cells modified by zinc-finger nucleases targeted to CCR5 control HIV-1 in vivo. Nat Biotechnol 28(8):839–847

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Badia R, Riveira-Muñoz E, Clotet B, Esté JA, Ballana E (2014) Gene editing using a zinc-finger nuclease mimicking the CCR5Delta32 mutation induces resistance to CCR5-using HIV-1. J Antimicrob Chemother (in press)

  87. Tebas P, Stein D, Tang WW, Frank I, Wang SQ, Lee G, Spratt SK, Surosky RT, Giedlin MA, Nichol G, Holmes MC, Gregory PD, Ando DG, Kalos M, Collman RG, Binder-Scholl G, Plesa G, Hwang WT, Levine BL, June CH (2014) Gene editing of CCR5 in autologous CD4 T cells of persons infected with HIV. N Engl J Med 370(10):901–910

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Natural Science Foundation of China (81360503), the United Foundation of Guizhou (Qiankehe J LKZ[2013]21), the Incubation Project for 2011 Collaborative Innovation Center for Tuberculosis Prevention and Cure in Guizhou Province, and the seed grant from Zunyi Medical University for newly recruited talents to Dr. Wan-Gang Gu.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to W.-G. Gu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gu, WG., Chen, XQ. Targeting CCR5 for anti-HIV research. Eur J Clin Microbiol Infect Dis 33, 1881–1887 (2014). https://doi.org/10.1007/s10096-014-2173-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10096-014-2173-0

Keywords

Navigation