Combination antibiotic treatment versus monotherapy for multidrug-resistant, extensively drug-resistant, and pandrug-resistant Acinetobacter infections: a systematic review

  • P. Poulikakos
  • G. S. Tansarli
  • M. E. FalagasEmail author


Controversy surrounds combination treatment or monotherapy against multidrug-resistant (MDR), extensively drug-resistant (XDR), and pandrug-resistant (PDR) Acinetobacter infections in clinical practice. We searched the PubMed and Scopus databases for studies reporting on the clinical outcomes of patients infected with MDR, XDR, and PDR Acinetobacter spp. with regard to the administered intravenous antibiotic treatment. Twelve studies reporting on 1,040 patients suffering from 1,044 infectious episodes of MDR Acinetobacter spp. were included. The overall mortality between studies varied from 28.6 to 70 %; from 25 to 100 % in the monotherapy arm and from 27 to 57.1 % in the combination arm. Combination treatment was superior to monotherapy in three studies, where carbapenem with ampicillin/sulbactam (mortality 30.8 %, p = 0.012), carbapenem with colistin (mortality 23 %, p = 0.009), and combinations of colistin with rifampicin, sulbactam with aminoglycosides, tigecycline with colistin and rifampicin, and tigecycline with rifampicin and amikacin (mortality 27 %, p < 0.05) were used against MDR Acinetobacter spp. resistant at least to carbapenems. The benefit was not validated in the remaining studies. Clinical success varied from 42.4 to 76.9 % and microbiological eradication varied from 32.7 to 67.3 %. Adverse events referred mainly to polymixins nephrotoxicity that varied from 19 to 50 %. The emergence of resistance was noted with tigecycline regimens in off-label uses in three studies. The available data preclude a firm recommendation with regard to combination treatment or monotherapy. For the time being, combination treatment may be preferred for severely ill patients. We urge for randomized controlled trials examining the optimal treatment of infections due to MDR, XDR, and PDR Acinetobacter spp.


Rifampicin Combination Treatment Colistin Carbapenems Polymyxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Conflict of interest



  1. 1.
    Falagas ME, Karveli EA, Siempos II, Vardakas KZ (2008) Acinetobacter infections: a growing threat for critically ill patients. Epidemiol Infect 136:1009–1019PubMedCrossRefPubMedCentralGoogle Scholar
  2. 2.
    Gaynes R, Edwards JR; National Nosocomial Infections Surveillance System (2005) Overview of nosocomial infections caused by gram-negative bacilli. Clin Infect Dis 41:848–854PubMedCrossRefGoogle Scholar
  3. 3.
    Karageorgopoulos DE, Falagas ME (2008) Current control and treatment of multidrug-resistant Acinetobacter baumannii infections. Lancet Infect Dis 8:751–762PubMedCrossRefGoogle Scholar
  4. 4.
    Gales AC, Jones RN, Sader HS (2006) Global assessment of the antimicrobial activity of polymyxin B against 54 731 clinical isolates of Gram-negative bacilli: report from the SENTRY antimicrobial surveillance programme (2001–2004). Clin Microbiol Infect 12:315–321PubMedCrossRefGoogle Scholar
  5. 5.
    Van Looveren M, Goossens H; ARPAC Steering Group (2004) Antimicrobial resistance of Acinetobacter spp. in Europe. Clin Microbiol Infect 10:684–704PubMedCrossRefGoogle Scholar
  6. 6.
    Michalopoulos A, Falagas ME (2010) Treatment of Acinetobacter infections. Expert Opin Pharmacother 11:779–788PubMedCrossRefGoogle Scholar
  7. 7.
    Ko WC, Lee HC, Chiang SR et al (2004) In vitro and in vivo activity of meropenem and sulbactam against a multidrug-resistant Acinetobacter baumannii strain. J Antimicrob Chemother 53:393–395PubMedCrossRefGoogle Scholar
  8. 8.
    Montero A, Ariza J, Corbella X et al (2004) Antibiotic combinations for serious infections caused by carbapenem-resistant Acinetobacter baumannii in a mouse pneumonia model. J Antimicrob Chemother 54:1085–1091PubMedCrossRefGoogle Scholar
  9. 9.
    Tripodi MF, Durante-Mangoni E, Fortunato R, Utili R, Zarrilli R (2007) Comparative activities of colistin, rifampicin, imipenem and sulbactam/ampicillin alone or in combination against epidemic multidrug-resistant Acinetobacter baumannii isolates producing OXA-58 carbapenemases. Int J Antimicrob Agents 30:537–540PubMedCrossRefGoogle Scholar
  10. 10.
    Yoon J, Urban C, Terzian C, Mariano N, Rahal JJ (2004) In vitro double and triple synergistic activities of Polymyxin B, imipenem, and rifampin against multidrug-resistant Acinetobacter baumannii. Antimicrob Agents Chemother 48:753–757PubMedCrossRefPubMedCentralGoogle Scholar
  11. 11.
    Santimaleeworagun W, Wongpoowarak P, Chayakul P, Pattharachayakul S, Tansakul P, Garey KW (2011) In vitro activity of colistin or sulbactam in combination with fosfomycin or imipenem against clinical isolates of carbapenem-resistant Acinetobacter baumannii producing OXA-23 carbapenemases. Southeast Asian J Trop Med Public Health 42:890–900PubMedGoogle Scholar
  12. 12.
    Magiorakos AP, Srinivasan A, Carey RB et al (2012) Multidrug-resistant, extensively drug-resistant and pandrug-resistant bacteria: an international expert proposal for interim standard definitions for acquired resistance. Clin Microbiol Infect 18:268–281PubMedCrossRefGoogle Scholar
  13. 13.
    Levin AS (2002) Multiresistant Acinetobacter infections: a role for sulbactam combinations in overcoming an emerging worldwide problem. Clin Microbiol Infect 8:144–153PubMedCrossRefGoogle Scholar
  14. 14.
    Corbella X, Ariza J, Ardanuy C et al (1998) Efficacy of sulbactam alone and in combination with ampicillin in nosocomial infections caused by multiresistant Acinetobacter baumannii. J Antimicrob Chemother 42:793–802PubMedCrossRefGoogle Scholar
  15. 15.
    Oliveira MS, Prado GV, Costa SF, Grinbaum RS, Levin AS (2008) Ampicillin/sulbactam compared with polymyxins for the treatment of infections caused by carbapenem-resistant Acinetobacter spp. J Antimicrob Chemother 61:1369–1375PubMedCrossRefGoogle Scholar
  16. 16.
    Tseng YC, Wang JT, Wu FL, Chen YC, Chie WC, Chang SC (2007) Prognosis of adult patients with bacteremia caused by extensively resistant Acinetobacter baumannii. Diagn Microbiol Infect Dis 59:181–190PubMedCrossRefGoogle Scholar
  17. 17.
    Hernández-Torres A, García-Vázquez E, Gómez J, Canteras M, Ruiz J, Yagüe G (2012) Multidrug and carbapenem-resistant Acinetobacter baumannii infections: factors associated with mortality. Med Clin (Barc) 138:650–655CrossRefGoogle Scholar
  18. 18.
    Shields RK, Clancy CJ, Gillis LM et al (2012) Epidemiology, clinical characteristics and outcomes of extensively drug-resistant Acinetobacter baumannii infections among solid organ transplant recipients. PLoS One 7:e52349PubMedCrossRefPubMedCentralGoogle Scholar
  19. 19.
    Kuo LC, Lai CC, Liao CH et al (2007) Multidrug-resistant Acinetobacter baumannii bacteraemia: clinical features, antimicrobial therapy and outcome. Clin Microbiol Infect 13:196–198PubMedCrossRefGoogle Scholar
  20. 20.
    Lim SK, Lee SO, Choi SH et al (2011) The outcomes of using colistin for treating multidrug resistant Acinetobacter species bloodstream infections. J Korean Med Sci 26:325–331PubMedCrossRefPubMedCentralGoogle Scholar
  21. 21.
    Durante-Mangoni E, Signoriello G, Andini R et al (2013) Colistin and rifampicin compared with colistin alone for the treatment of serious infections due to extensively drug-resistant Acinetobacter baumannii: a multicenter, randomized clinical trial. Clin Infect Dis 57:349–358PubMedCrossRefGoogle Scholar
  22. 22.
    Tasbakan MS, Pullukcu H, Sipahi OR, Tasbakan MI, Aydemir S, Bacakoglu F (2011) Is tigecyclin a good choice in the treatment of multidrug-resistant Acinetobacter baumannii pneumonia? J Chemother 23:345–349PubMedCrossRefGoogle Scholar
  23. 23.
    Ye JJ, Lin HS, Kuo AJ et al (2011) The clinical implication and prognostic predictors of tigecycline treatment for pneumonia involving multidrug-resistant Acinetobacter baumannii. J Infect 63:351–361PubMedCrossRefGoogle Scholar
  24. 24.
    Betrosian AP, Frantzeskaki F, Xanthaki A, Douzinas EE (2008) Efficacy and safety of high-dose ampicillin/sulbactam vs. colistin as monotherapy for the treatment of multidrug resistant Acinetobacter baumannii ventilator-associated pneumonia. J Infect 56:432–436PubMedCrossRefGoogle Scholar
  25. 25.
    Gounden R, Bamford C, van Zyl-Smit R, Cohen K, Maartens G (2009) Safety and effectiveness of colistin compared with tobramycin for multi-drug resistant Acinetobacter baumannii infections. BMC Infect Dis 9:26PubMedCrossRefPubMedCentralGoogle Scholar
  26. 26.
    Lee CM, Lim HK, Liu CP, Tseng HK (2005) Treatment of pan-drug resistant Acinetobacter baumannii. Scand J Infect Dis 37:195–199PubMedCrossRefGoogle Scholar
  27. 27.
    Falagas ME, Rafailidis PI (2007) Attributable mortality of Acinetobacter baumannii: no longer a controversial issue. Crit Care 11:134PubMedCrossRefPubMedCentralGoogle Scholar
  28. 28.
    Betrosian AP, Frantzeskaki F, Xanthaki A, Georgiadis G (2007) High-dose ampicillin–sulbactam as an alternative treatment of late-onset VAP from multidrug-resistant Acinetobacter baumannii. Scand J Infect Dis 39:38–43PubMedCrossRefGoogle Scholar
  29. 29.
    Oliveira MS, Costa SF, Pedri Ed, van der Heijden I, Levin AS (2013) The minimal inhibitory concentration for sulbactam was not associated with the outcome of infections caused by carbapenem-resistant Acinetobacter sp. treated with ampicillin/sulbactam. Clinics (Sao Paulo) 68:569–573CrossRefGoogle Scholar
  30. 30.
    Rodríguez-Hernández MJ, Cuberos L, Pichardo C et al (2001) Sulbactam efficacy in experimental models caused by susceptible and intermediate Acinetobacter baumannii strains. J Antimicrob Chemother 47:479–482PubMedCrossRefGoogle Scholar
  31. 31.
    Wood GC, Hanes SD, Croce MA, Fabian TC, Boucher BA (2002) Comparison of ampicillin–sulbactam and imipenem–cilastatin for the treatment of Acinetobacter ventilator-associated pneumonia. Clin Infect Dis 34:1425–1430PubMedCrossRefGoogle Scholar
  32. 32.
    American Thoracic Society; Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416CrossRefGoogle Scholar
  33. 33.
    Dellinger RP, Levy MM, Rhodes A et al (2013) Surviving Sepsis Campaign: International guidelines for management of severe sepsis and septic shock, 2012. Intensive Care Med 39:165–228PubMedCrossRefGoogle Scholar
  34. 34.
    Falagas ME, Lourida P, Poulikakos P, Rafailidis PI, Tansarli GS (2014) Antibiotic treatment of infections due to carbapenem-resistant Enterobacteriaceae: systematic evaluation of the available evidence. Antimicrob Agents Chemother 58:654–663PubMedCrossRefPubMedCentralGoogle Scholar
  35. 35.
    Falagas ME, Matthaiou DK, Bliziotis IA (2006) The role of aminoglycosides in combination with a beta-lactam for the treatment of bacterial endocarditis: a meta-analysis of comparative trials. J Antimicrob Chemother 57:639–647PubMedCrossRefGoogle Scholar
  36. 36.
    Bliziotis IA, Samonis G, Vardakas KZ, Chrysanthopoulou S, Falagas ME (2005) Effect of aminoglycoside and beta-lactam combination therapy versus beta-lactam monotherapy on the emergence of antimicrobial resistance: a meta-analysis of randomized, controlled trials. Clin Infect Dis 41:149–158PubMedCrossRefGoogle Scholar
  37. 37.
    Paul M, Lador A, Grozinsky-Glasberg S, Leibovici L (2014) Beta lactam antibiotic monotherapy versus beta lactam-aminoglycoside antibiotic combination therapy for sepsis. Cochrane Database Syst Rev 1:CD003344PubMedGoogle Scholar
  38. 38.
    Vardakas KZ, Tansarli GS, Bliziotis IA, Falagas ME (2013) beta-Lactam plus aminoglycoside or fluoroquinolone combination versus beta-lactam monotherapy for Pseudomonas aeruginosa infections: a meta-analysis. Int J Antimicrob Agents 41:301–310PubMedCrossRefGoogle Scholar
  39. 39.
    FDA Drug Safety Communication (2010) Increased risk of death with Tygacil (tigecycline) compared to other antibiotics used to treat similar infectionsGoogle Scholar
  40. 40.
    Leibovici L, Paul M, Poznanski O et al (1997) Monotherapy versus beta-lactam-aminoglycoside combination treatment for gram-negative bacteremia: a prospective, observational study. Antimicrob Agents Chemother 41:1127–1133PubMedPubMedCentralGoogle Scholar
  41. 41.
    Vidal L, Gafter-Gvili A, Borok S, Fraser A, Leibovici L, Paul M (2007) Efficacy and safety of aminoglycoside monotherapy: systematic review and meta-analysis of randomized controlled trials. J Antimicrob Chemother 60:247–257PubMedCrossRefGoogle Scholar
  42. 42.
    Lim TP, Tan TY, Lee W et al (2011) In-vitro activity of polymyxin B, rifampicin, tigecycline alone and in combination against carbapenem-resistant Acinetobacter baumannii in Singapore. PLoS One 6:e18485Google Scholar
  43. 43.
    Dizbay M, Tozlu DK, Cirak MY, Isik Y, Ozdemir K, Arman D (2010) In vitro synergistic activity of tigecycline and colistin against XDR-Acinetobacter baumannii. J Antibiot (Tokyo) 63:51–53CrossRefGoogle Scholar
  44. 44.
    Zusman O, Avni T, Leibovici L et al (2013) Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems. Antimicrob Agents Chemother 57:5104–5111PubMedCrossRefPubMedCentralGoogle Scholar
  45. 45.
    Capuzzo M, Valpondi V, Sgarbi A et al (2000) Validation of severity scoring systems SAPS II and APACHE II in a single-center population. Intensive Care Med 26:1779–1785PubMedCrossRefGoogle Scholar
  46. 46.
    Escarce JJ, Kelley MA (1990) Admission source to the medical intensive care unit predicts hospital death independent of APACHE II score. JAMA 264:2389–2394PubMedCrossRefGoogle Scholar
  47. 47.
    Polderman KH, Girbes AR, Thijs LG, Strack van Schijndel RJ (2001) Accuracy and reliability of APACHE II scoring in two intensive care units Problems and pitfalls in the use of APACHE II and suggestions for improvement. Anaesthesia 56:47–50PubMedCrossRefGoogle Scholar
  48. 48.
    Falagas ME, Rafailidis PI (2009) Nephrotoxicity of colistin: new insight into an old antibiotic. Clin Infect Dis 48:1729–1731PubMedCrossRefGoogle Scholar
  49. 49.
    Peleg AY, Potoski BA, Rea R et al (2007) Acinetobacter baumannii bloodstream infection while receiving tigecycline: a cautionary report. J Antimicrob Chemother 59:128–131PubMedCrossRefGoogle Scholar
  50. 50.
    Ramirez J, Dartois N, Gandjini H, Yan JL, Korth-Bradley J, McGovern PC (2013) Randomized phase 2 trial to evaluate the clinical efficacy of two high-dosage tigecycline regimens versus imipenem–cilastatin for treatment of hospital-acquired pneumonia. Antimicrob Agents Chemother 57:1756–1762PubMedCrossRefPubMedCentralGoogle Scholar
  51. 51.
    Falagas ME, Bliziotis IA, Siempos II (2006) Attributable mortality of Acinetobacter baumannii infections in critically ill patients: a systematic review of matched cohort and case–control studies. Crit Care 10:R48PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • P. Poulikakos
    • 1
  • G. S. Tansarli
    • 1
  • M. E. Falagas
    • 1
    • 2
    • 3
    Email author
  1. 1.Alfa Institute of Biomedical Sciences (AIBS)Marousi, AthensGreece
  2. 2.Department of Internal Medicine—Infectious DiseasesIaso General Hospital, Iaso GroupAthensGreece
  3. 3.Department of MedicineTufts University School of MedicineBostonUSA

Personalised recommendations