Activity of colistin in combination with tigecycline or rifampicin against multidrug-resistant Stenotrophomonas maltophilia

  • J. W. Betts
  • L. M. Phee
  • N. Woodford
  • D. W. WarehamEmail author


The antimicrobial treatment of Stenotrophomonas maltophilia infections is complicated by intrinsic multidrug resistance and a lack of reliable susceptibility data. We assessed the activity of colistin (COL), rifampicin (RIF) and tigecycline (TGC) alone and in combination using a range of in vitro susceptibility testing methodologies and a simple invertebrate model of S. maltophilia infection (Galleria mellonella). Synergy [fractional inhibitory concentration indices (FICIs) ≤0.5] between COL and either RIF or TGC was observed against 92 % and 88 % of 25 S. maltophilia isolates, respectively, despite resistance to one or another of the single agents alone. In time–kill assays, COL combined with either RIF or TGC was superior to single agents, but only the COL/RIF regimen was reliably bactericidal. The in vitro findings correlated with treatment outcomes in G. mellonella, with heightened survival observed for larvae treated with COL/RIF or COL/TGC compared with COL, RIF or TGC alone. COL combined with RIF was the most effective combination overall in both in vitro and in vivo (p < 0.05) assays. Given the difficulty in selecting appropriate therapy for S. maltophilia infections, regimens consisting of COL combined with RIF or TGC could be considered for clinical use.


Cystic Fibrosis Colistin Polymyxin Tigecycline Stenotrophomonas Maltophilia 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to gratefully acknowledge Pfizer for the supply of tigecycline.


No specific funding was available for this study.

Competing interests

All authors declare no conflict of interest.

Ethical approval

Not applicable.


  1. 1.
    Denton M, Kerr KG (1998) Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin Microbiol Rev 11(1):57–80PubMedCentralPubMedGoogle Scholar
  2. 2.
    Krueger TS, Clark EA, Nix DE (2001) In vitro susceptibility of Stenotrophomonas maltophilia to various antimicrobial combinations. Diagn Microbiol Infect Dis 41:71–78PubMedCrossRefGoogle Scholar
  3. 3.
    Poulos CD, Matsumura SO, Willey BM, Low DE, McGeer A (1995) In vitro activities of antimicrobial combinations against Stenotrophomonas (Xanthomonas) maltophilia. Antimicrob Agents Chemother 39(10):2220–2223PubMedCentralPubMedCrossRefGoogle Scholar
  4. 4.
    Avison MB, Higgins CS, Ford PJ, von Heldreich CJ, Walsh TR, Bennett PM (2002) Differential regulation of L1 and L2 β-lactamase expression in Stenotrophomonas maltophilia. J Antimicrob Chemother 49:387–389PubMedCrossRefGoogle Scholar
  5. 5.
    Zhang L, Li XZ, Poole K (2000) Multiple antibiotic resistance in Stenotrophomonas maltophilia: involvement of a multidrug efflux system. Antimicrob Agents Chemother 44:287–293PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Giamarellos-Bourboulis EJ, Karnesis L, Galani I, Giamarellou H (2002) In vitro killing effect of moxifloxacin on clinical isolates of Stenotrophomonas maltophilia resistant to trimethoprim–sulfamethoxazole. Antimicrob Agents Chemother 46:3997–3999PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Zelenitsky SA, Iacovides H, Ariano RE, Harding GKM (2005) Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 51:39–43PubMedCrossRefGoogle Scholar
  8. 8.
    Berg G, Roskot N, Smalla K (1999) Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 37:3594–3600Google Scholar
  9. 9.
    Al-Jasser AM (2006) Stenotrophomonas maltophilia resistant to trimethoprim–sulfamethoxazole: an increasing problem. Ann Clin Microbiol Antimicrob 5:23PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Toleman MA, Bennett PM, Bennett DMC, Jones RN, Walsh TR (2007) Global emergence of trimethoprim/sulfamethoxazole resistance in Stenotrophomonas maltophilia mediated by acquisition of sul genes. Emerg Infect Dis 13(4):559–565PubMedCentralPubMedCrossRefGoogle Scholar
  11. 11.
    Noskin GA (2005) Tigecycline: a new glycylcycline for treatment of serious infections. Clin Infect Dis 41:S303–S314PubMedCrossRefGoogle Scholar
  12. 12.
    Gordon NC, Wareham DW (2009) A Review of clinical and microbiological outcomes following treatment of infections involving multidrug-resistant Acinetobacter baumannii with tigecycline. J Antimicrob Chemother 63:775–780PubMedCrossRefGoogle Scholar
  13. 13.
    Drapeau CMJ, Grilli E, Petrosillo N (2010) Rifampicin combined regimens for Gram-negative infections: data from the literature. Int J Antimicrob Agents 35:39–44PubMedCrossRefGoogle Scholar
  14. 14.
    Milne KEN, Gould IM (2012) Combination antimicrobial susceptibility testing of multidrug-resistant Stenotrophomonas maltophilia from cystic fibrosis patients. Antimicrob Agents Chemother 56(8):4071–4077PubMedCentralPubMedCrossRefGoogle Scholar
  15. 15.
    Li J, Nation RL, Milne RW, Turnidge JD, Coulthard K (2005) Evaluation of colistin as an agent against multi-resistant Gram-negative bacteria. Int J Antimicrob Agents 25:11–25PubMedCrossRefGoogle Scholar
  16. 16.
    Wareham DW, Gordon NC, Hornsey M (2011) In vitro activity of teicoplanin combined with colistin versus multidrug-resistant strains of Acinetobacter baumannii. J Antimicrob Chemother 66(5):1047–1051PubMedCrossRefGoogle Scholar
  17. 17.
    Church D, Lloyd T, Peirano G, Pitout J (2013) Antimicrobial susceptibility and combination testing of invasive Stenotrophomonas maltophilia isolates. Scand J Infect Dis 45(4):256–270CrossRefGoogle Scholar
  18. 18.
    Giamarellos-Bourboulis EJ, Karnesis L, Giamarellou H (2002) Synergy of colistin with rifampin and trimethoprim/sulfamethoxazole on multidrug-resistant Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 44:259–263PubMedCrossRefGoogle Scholar
  19. 19.
    Gülmez D, Cakar A, Sener B, Karakaya J, Hasçelik G (2010) Comparison of different antimicrobial susceptibility testing methods for Stenotrophomonas maltophilia and results of synergy testing. J Infect Chemother 16:322–328PubMedCrossRefGoogle Scholar
  20. 20.
    Tascini C, Ferranti S, Messina F, Menichetti F (2000) In vitro and in vivo synergistic activity of colistin, rifampin, and amikacin against a multiresistant Pseudomonas aeruginosa isolate. Clin Microbiol Infect Dis 6:690–691CrossRefGoogle Scholar
  21. 21.
    Milne KEN, Gould IM (2010) Combination testing of multidrug-resistant cystic fibrosis isolates of Pseudomonas aeruginosa: use of a new parameter, the susceptible breakpoint index. J Antimicrob Chemother 65:82–90PubMedCrossRefGoogle Scholar
  22. 22.
    Bergen PJ, Forrest A, Bulitta JB, Tsuji BT, Sidjabat HE, Paterson DL, Li J, Nation RL (2011) Clinically relevant plasma concentrations of colistin in combination with imipenem enhance pharmacodynamic activity against multidrug-resistant Pseudomonas aeruginosa at multiple inocula. Antimicrob Agents Chemother 55(11):5134–5142PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Meagher AK, Ambrose PG, Grasela TH, Ellis-Grosse EJ (2005) The pharmacokinetic and pharmacodynamic profile of tigecycline. Clin Infect Dis 41(Suppl 5):S333–S340PubMedCrossRefGoogle Scholar
  24. 24.
    Verbist L, Gyselen A (1968) Antituberculous activity of rifampin in vitro and in vivo and the concentrations attained in human blood. Am Rev Respir Dis 98:923–932PubMedGoogle Scholar
  25. 25.
    Nicoletti M, Iacobino A, Prosseda G, Fiscarelli E, Zarrilli R, De Carolis E, Petrucca A, Nencioni L, Colonna B, Casalino M (2011) Stenotrophomonas maltophilia strains from cystic fibrosis patients: genomic variability and molecular characterization of some virulence determinants. Int J Med Microbiol 301(1):34–43PubMedCrossRefGoogle Scholar
  26. 26.
    Hornsey M, Wareham DW (2011) In vivo efficacy of glycopeptide–colistin combination therapies in a Galleria mellonella model of Acinetobacter baumannii infection. Antimicrob Agents Chemother 55(7):3534–3537PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    Nicodemo AC, Araujo MRE, Ruiz AS, Gales AC (2004) In vitro susceptibility of Stenotrophomonas maltophilia isolates: comparison of disc diffusion, Etest and agar dilution methods. J Antimicrob Chemother 53:604–608PubMedCrossRefGoogle Scholar
  28. 28.
    Biswas S, Dubus JC, Reynaud-Gaubert M, Stremler N, Rolain JM (2013) Evaluation of colistin susceptibility in multidrug-resistant clinical isolates from cystic fibrosis, France. Eur J Clin Microbiol Infect Dis 32(11):1461–1464PubMedCrossRefGoogle Scholar
  29. 29.
    Hindler JA, Humphries RM (2013) Colistin MIC variability by method for contemporary clinical isolates of multidrug-resistant Gram-negative bacilli. J Clin Microbiol 51(6):1678–1684PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Vaara M (1992) Agents that increase the permeability of the outer membrane. Microbiol Rev 56:395–411PubMedCentralPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  • J. W. Betts
    • 1
  • L. M. Phee
    • 1
    • 2
  • N. Woodford
    • 1
    • 3
  • D. W. Wareham
    • 1
    • 2
    Email author
  1. 1.Antimicrobial Research Group, Centre for Immunology and Infectious Disease, Blizard InstituteQueen Mary, University of LondonLondonUK
  2. 2.Division of Infection, Barts Health NHS TrustLondonUK
  3. 3.Antimicrobial Resistance and Healthcare Associated Infections Reference Unit, Public Health England, Reference Microbiology ServicesLondonUK

Personalised recommendations