Risk factors and pathogens involved in early ventilator-acquired pneumonia in patients with severe subarachnoid hemorrhage

  • R. Cinotti
  • A. Dordonnat-Moynard
  • F. Feuillet
  • A. Roquilly
  • N. Rondeau
  • D. Lepelletier
  • J. Caillon
  • N. Asseray
  • Y. Blanloeil
  • B. Rozec
  • K. Asehnoune


Ventilator-acquired pneumonia (VAP) is a common burden in intensive care unit (ICU) patients, but, to date, specific data are not available in patients with severe aneurysmal subarachnoid hemorrhage (SAH). A single neuro-ICU retrospective analysis of 193 patients with SAH requiring mechanical ventilation (MV) ≥48 h admitted from January 2005 to May 2010 was undertaken. The diagnosis of early VAP was prospectively upheld during a multidisciplinary staff meeting, according to the American Thoracic Society (ATS) 2005 guidelines with a threshold of 7 days after the onset of MV. Patients had a median age of 53 (44–62) years and 70 (36 %) were male. The median Glasgow coma scale (GCS) score before MV was 9 (5–14). 142 (74 %) patients had a World Federation of Neurosurgeons (WFNS) score ≥III. Aneurysm was secured with an endovascular coiling procedure in 162 (84 %) patients. 81 (48.7 %) patients declared an early VAP. On multivariate analysis, male sex (odds ratio [OR] 2.26, 95 % confidence interval [CI] [1.14–4.46]), use of mannitol before day 7 (OR 3.03, 95 % CI [1.54–5.95]), and achieving enteral nutrition ≥20 kcal kg−1 day−1 after day 7 (OR 2.91, 95 % CI [1.27–6.67]) remained independent risk factors of VAP. The main pathogens involved were methicillin-susceptible Staphylococcus aureus (MSSA) (34.9 %), Haemophilus influenzae (28.1 %), Streptococcus pneumoniae (15.5 %), and Enterobacteriaceae (10.7 %). Early VAP was associated with a longer duration of MV and ICU stay, but not with an excess of mortality. Early VAP bears significant morbidity in patients with severe SAH. Pathogens involved in early VAP are susceptible to antibiotics. Among modifiable risk factors of VAP, early enteral nutrition could be an easy and effective target.


Intensive Care Unit Enteral Nutrition Haemophilus Influenzae Nosocomial Pneumonia Confident Interval 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.




Author contributions

Raphaël Cinotti designed the study, analyzed the data, and wrote the paper. Audrey Dordonnat-Moynard retrieved and analyzed the data, and edited the manuscript. Fanny Feuillet performed the statistical analysis. Antoine Roquilly designed the study and edited the manuscript. Nelly Rondeau edited the manuscript. Nathalie Asseray, Jocelyne Caillon, and Didier Lepelletier collected the data and edited the manuscript. Yvonnick Blanloeil and Bertrand Rozec edited the manuscript. Karim Asehnoune analyzed the data and wrote the paper.

Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Connolly ES Jr, Rabinstein AA, Carhuapoma JR, Derdeyn CP, Dion J, Higashida RT et al (2012) Guidelines for the management of aneurysmal subarachnoid hemorrhage: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 43:1711–1737. doi: 10.1161/STR.0b013e3182587839 PubMedCrossRefGoogle Scholar
  2. 2.
    Frontera JA, Fernandez A, Schmidt JM, Claassen J, Wartenberg KE, Badjatia N et al (2008) Impact of nosocomial infectious complications after subarachnoid hemorrhage. Neurosurgery 62:80–87, discussion 87. doi: 10.1227/01.NEU.0000311064.18368.EA PubMedCrossRefGoogle Scholar
  3. 3.
    American Thoracic Society; Infectious Diseases Society of America (2005) Guidelines for the management of adults with hospital-acquired, ventilator-associated, and healthcare-associated pneumonia. Am J Respir Crit Care Med 171:388–416. doi: 10.1164/rccm.200405-644ST CrossRefGoogle Scholar
  4. 4.
    Cook A, Norwood S, Berne J (2010) Ventilator-associated pneumonia is more common and of less consequence in trauma patients compared with other critically ill patients. J Trauma 69:1083–1091. doi: 10.1097/TA.0b013e3181f9fb51 PubMedCrossRefGoogle Scholar
  5. 5.
    Bronchard R, Albaladejo P, Brezac G, Geffroy A, Seince P-F, Morris W et al (2004) Early onset pneumonia: risk factors and consequences in head trauma patients. Anesthesiology 100:234–239PubMedCrossRefGoogle Scholar
  6. 6.
    Antonelli M, Moro ML, Capelli O, De Blasi RA, D’Errico RR, Conti G et al (1994) Risk factors for early onset pneumonia in trauma patients. Chest 105:224–228PubMedCrossRefGoogle Scholar
  7. 7.
    Lepelletier D, Roquilly A, Demeure dit latte D, Mahe PJ, Loutrel O, Champin P et al (2010) Retrospective analysis of the risk factors and pathogens associated with early-onset ventilator-associated pneumonia in surgical-ICU head-trauma patients. J Neurosurg Anesthesiol 22:32–37. doi: 10.1097/ANA.0b013e3181bdf52f PubMedCrossRefGoogle Scholar
  8. 8.
    Stover JF, Stocker R (1998) Barbiturate coma may promote reversible bone marrow suppression in patients with severe isolated traumatic brain injury. Eur J Clin Pharmacol 54:529–534PubMedCrossRefGoogle Scholar
  9. 9.
    Nadal P, Nicolás JM, Font C, Vilella A, Nogué S (1995) Pneumonia in ventilated head trauma patients: the role of thiopental therapy. Eur J Emerg Med 2:14–16PubMedCrossRefGoogle Scholar
  10. 10.
    Rello J, Ausina V, Castella J, Net A, Prats G (1992) Nosocomial respiratory tract infections in multiple trauma patients. Influence of level of consciousness with implications for therapy. Chest 102:525–529PubMedCrossRefGoogle Scholar
  11. 11.
    Brain Trauma Foundation; American Association of Neurological Surgeons; Congress of Neurological Surgeons; Joint Section on Neurotrauma and Critical Care, AANS/CNS, Bratton SL, Chestnut RM et al (2007) Guidelines for the management of severe traumatic brain injury. VIII. Intracranial pressure thresholds. J Neurotrauma 24(Suppl 1):S55–S58. doi: 10.1089/neu.2007.9988 PubMedGoogle Scholar
  12. 12.
    Rondeau N, Cinotti R, Rozec B, Roquilly A, Floch H, Groleau N et al (2012) Dobutamine-induced high cardiac index did not prevent vasospasm in subarachnoid hemorrhage patients: a randomized controlled pilot study. Neurocrit Care 17:183–190. doi: 10.1007/s12028-012-9732-y PubMedCrossRefGoogle Scholar
  13. 13.
    Roberts I, Sydenham E (2012) Barbiturates for acute traumatic brain injury. Cochrane Database Syst Rev 12:CD000033. doi: 10.1002/14651858.CD000033.pub2 PubMedGoogle Scholar
  14. 14.
    Beydon L (2005) Severe subarachnoid haemorrhage. Ann Fr Anesth Reanim 24:713–714. doi: 10.1016/j.annfar.2005.03.031 PubMedCrossRefGoogle Scholar
  15. 15.
    Kreymann KG, Berger MM, Deutz NEP, Hiesmayr M, Jolliet P, Kazandjiev G et al (2006) ESPEN guidelines on enteral nutrition: intensive care. Clin Nutr 25:210–223. doi: 10.1016/j.clnu.2006.01.021 PubMedCrossRefGoogle Scholar
  16. 16.
    Boles J-M, Bion J, Connors A, Herridge M, Marsh B, Melot C et al (2007) Weaning from mechanical ventilation. Eur Respir J 29:1033–1056. doi: 10.1183/09031936.00010206 PubMedCrossRefGoogle Scholar
  17. 17.
    Rumbak MJ, Newton M, Truncale T, Schwartz SW, Adams JW, Hazard PB (2004) A prospective, randomized, study comparing early percutaneous dilational tracheotomy to prolonged translaryngeal intubation (delayed tracheotomy) in critically ill medical patients. Crit Care Med 32:1689–1694. doi: 10.1097/01.CCM.0000134835.05161.B6 PubMedCrossRefGoogle Scholar
  18. 18.
    Peñuelas O, Frutos-Vivar F, Fernández C, Anzueto A, Epstein SK, Apezteguía C et al (2011) Characteristics and outcomes of ventilated patients according to time to liberation from mechanical ventilation. Am J Respir Crit Care Med 184:430–437. doi: 10.1164/rccm.201011-1887OC PubMedCrossRefGoogle Scholar
  19. 19.
    Bernard GR, Artigas A, Brigham KL, Carlet J, Falke K, Hudson L et al (1994) The American-European Consensus Conference on ARDS. Definitions, mechanisms, relevant outcomes, and clinical trial coordination. Am J Respir Crit Care Med 149:818–824. doi: 10.1164/ajrccm.149.3.7509706 PubMedCrossRefGoogle Scholar
  20. 20.
    Trouillet JL, Chastre J, Vuagnat A, Joly-Guillou ML, Combaux D, Dombret MC et al (1998) Ventilator-associated pneumonia caused by potentially drug-resistant bacteria. Am J Respir Crit Care Med 157:531–539PubMedCrossRefGoogle Scholar
  21. 21.
    Deknuydt F, Roquilly A, Cinotti R, Altare F, Asehnoune K (2013) An in vitro model of mycobacterial granuloma to investigate the immune response in brain-injured patients. Crit Care Med 41:245–254. doi: 10.1097/CCM.0b013e3182676052 PubMedCrossRefGoogle Scholar
  22. 22.
    Meisel C, Schwab JM, Prass K, Meisel A, Dirnagl U (2005) Central nervous system injury-induced immune deficiency syndrome. Nat Rev Neurosci 6:775–786. doi: 10.1038/nrn1765 PubMedCrossRefGoogle Scholar
  23. 23.
    Marik PE, Zaloga GP (2001) Early enteral nutrition in acutely ill patients: a systematic review. Crit Care Med 29:2264–2270PubMedCrossRefGoogle Scholar
  24. 24.
    Poulard F, Dimet J, Martin-Lefevre L, Bontemps F, Fiancette M, Clementi E et al (2010) Impact of not measuring residual gastric volume in mechanically ventilated patients receiving early enteral feeding: a prospective before–after study. JPEN J Parenter Enteral Nutr 34:125–130. doi: 10.1177/0148607109344745 PubMedCrossRefGoogle Scholar
  25. 25.
    Reignier J, Mercier E, Le Gouge A, Boulain T, Desachy A, Bellec F et al (2013) Effect of not monitoring residual gastric volume on risk of ventilator-associated pneumonia in adults receiving mechanical ventilation and early enteral feeding: a randomized controlled trial. JAMA 309:249–256. doi: 10.1001/jama.2012.196377 PubMedCrossRefGoogle Scholar
  26. 26.
    Roquilly A, Cinotti R, Jaber S, Vourc’h M, Pengam F, Mahe PJ et al (2013) Implementation of an evidence-based extubation readiness bundle in 499 brain-injured patients. A before–after evaluation of a quality improvement project. Am J Respir Crit Care Med 188:958–966. doi: 10.1164/rccm.201301-0116OC PubMedCrossRefGoogle Scholar
  27. 27.
    Junger WG, Hoyt DB, Davis RE, Herdon-Remelius C, Namiki S, Junger H et al (1998) Hypertonicity regulates the function of human neutrophils by modulating chemoattractant receptor signaling and activating mitogen-activated protein kinase p38. J Clin Invest 101:2768–2779. doi: 10.1172/JCI1354 PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Cuschieri J, Gourlay D, Garcia I, Jelacic S, Maier RV (2002) Hypertonic preconditioning inhibits macrophage responsiveness to endotoxin. J Immunol 168:1389–1396PubMedCrossRefGoogle Scholar
  29. 29.
    Asehnoune K, Roquilly A, Abraham E (2012) Innate immune dysfunction in trauma patients: from pathophysiology to treatment. Anesthesiology 117:411–416. doi: 10.1097/ALN.0b013e31825f018d PubMedCrossRefGoogle Scholar
  30. 30.
    Yu H-P, Chaudry IH (2009) The role of estrogen and receptor agonists in maintaining organ function after trauma-hemorrhage. Shock 31:227–237. doi: 10.1097/SHK.0b013e31818347e7 PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Agbaht K, Lisboa T, Pobo A, Rodriguez A, Sandiumenge A, Diaz E et al (2007) Management of ventilator-associated pneumonia in a multidisciplinary intensive care unit: does trauma make a difference? Intensive Care Med 33:1387–1395. doi: 10.1007/s00134-007-0729-5 PubMedCrossRefGoogle Scholar
  32. 32.
    Chastre J, Wolff M, Fagon J-Y, Chevret S, Thomas F, Wermert D et al (2003) Comparison of 8 vs 15 days of antibiotic therapy for ventilator-associated pneumonia in adults: a randomized trial. JAMA 290:2588–2598. doi: 10.1001/jama.290.19.2588 PubMedCrossRefGoogle Scholar
  33. 33.
    Sirvent JM, Torres A, El-Ebiary M, Castro P, de Batlle J, Bonet A (1997) Protective effect of intravenously administered cefuroxime against nosocomial pneumonia in patients with structural coma. Am J Respir Crit Care Med 155:1729–1734. doi: 10.1164/ajrccm.155.5.9154884 PubMedCrossRefGoogle Scholar
  34. 34.
    Vallés J, Peredo R, Burgueño MJ, Rodrigues de Freitas AP, Millán S, Espasa M et al (2013) Efficacy of single-dose antibiotic against early-onset pneumonia in comatose patients who are ventilated. Chest 143:1219–1225. doi: 10.1378/chest.12-1361 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Cinotti
    • 1
    • 2
  • A. Dordonnat-Moynard
    • 3
  • F. Feuillet
    • 4
    • 5
  • A. Roquilly
    • 3
    • 6
  • N. Rondeau
    • 1
    • 2
  • D. Lepelletier
    • 7
  • J. Caillon
    • 6
    • 7
  • N. Asseray
    • 8
  • Y. Blanloeil
    • 1
    • 2
  • B. Rozec
    • 1
    • 2
    • 9
  • K. Asehnoune
    • 3
    • 6
    • 10
  1. 1.Service Anesthésie-RéanimationHôpital Guillaume et René LaennecSaint-HerblainFrance
  2. 2.CHU de NantesNantes CedexFrance
  3. 3.Service Anesthésie-Réanimation Chirurgicale, Hôtel DieuCHU de NantesNantes CedexFrance
  4. 4.EA 4275 “Biostatistique, Recherche Clinique et Mesures Subjectives en Santé”, Faculté de PharmacieUniversité de NantesNantes Cedex 1France
  5. 5.Plateforme de Biométrie, Cellule de Promotion de la Recherche CliniqueCHU de NantesNantesFrance
  6. 6.Laboratoire UPRES EA 3826 «Thérapeutiques Cliniques et Expérimentales des Infections», Faculté de MédecineUniversité de NantesNantesFrance
  7. 7.Pôle Biologie, Service de Bactériologie et Hygiène HospitalièreCHU de NantesNantes CedexFrance
  8. 8.Service Maladies Infectieuses et Tropicales, Hôtel DieuCHU de NantesNantes CedexFrance
  9. 9.Institut du Thorax, INSERM UMR1087 IRT, UN 8 quai MoncousuNantes Cedex 1France
  10. 10.Hôtel Dieu—HME Centre Hospitalier Universitaire de NantesNantes Cedex 9France

Personalised recommendations