Evaluation of two matrix-assisted laser desorption ionization–time of flight mass spectrometry systems for identification of viridans group streptococci

  • P. Kärpänoja
  • I. Harju
  • K. Rantakokko-Jalava
  • M. Haanperä
  • H. Sarkkinen


In this study, the performances of two matrix-assisted laser desorption ionization–time of flight mass spectrometry (MALDI-TOF MS) systems, MALDI Biotyper (Bruker Daltonics) and VITEK MS (bioMérieux), were evaluated in the identification of viridans group streptococci. Two collections of isolates were tested with both methods. From a panel of type collection strains (n = 54), MALDI Biotyper gave correct species-level identification for 51/54 (94 %) strains and 37/54 (69 %) strains for the VITEK MS in vitro diagnostic (IVD) method. Additionally, a collection of blood cultures isolates which had been characterized earlier with partial sequencing of 16S rRNA (n = 97) was analyzed. MALDI Biotyper classified 89 % and VITEK MS 93 % of these correctly to the group level. Comparison of species-level identification from the blood culture collection was possible for 36 strains. MALDI Biotyper identified 75 % and VITEK MS 97 % of these strains consistently. Among the clinical isolates, MALDI Biotyper misidentified 36 strains as Streptococcus pneumoniae. Nevertheless, our results suggest that the current MALDI-TOF methods are a good alternative for the identification of viridans streptococci and do perform as well as or better than commercial phenotypical methods.


Group Streptococcus Viridans Group Streptococcus Blood Culture Isolate Optochin Mitis Group Streptococcus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Piritta Peri, Saija Vahanne, Saana Viertomanner, Laura Juska, and Janne Tarhanen for their skillful technical assistance.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10096_2013_2012_MOESM1_ESM.doc (45 kb)
ESM 1 (DOC 45 kb)


  1. 1.
    Spellberg B, Brandt C (2011) Streptococcus. In: Versalovic J, Carroll KC, Funke G, Jorgensen JH, Landry ML, Warnock DW (eds) Manual of clinical microbiology, 10th edn. ASM Press, Washington DC, pp 331–349Google Scholar
  2. 2.
    Doern CD, Burnham CAD (2010) It’s not easy being green: the viridans group streptococci, with a focus on pediatric clinical manifestations. J Clin Microbiol 48:3829–3835PubMedCentralPubMedCrossRefGoogle Scholar
  3. 3.
    Sinner SW, Tunkel AR (2009) Viridans streptococci, groups C and G streptococci, and Gemella species. In: Mandell GL, Bennett JE, Dolin R (eds) Mandell, Douglas, and Bennett’s principles and practice of infectious diseases, 7th edn. Churchill Livingstone Elsevier, Philadelphia, pp 2667–2680Google Scholar
  4. 4.
    Klein RS, Recco RA, Catalano MT, Edberg SC, Casey JI, Steigbigel NH (1977) Association of Streptococcus bovis with carcinoma of the colon. N Engl J Med 297:800–802PubMedCrossRefGoogle Scholar
  5. 5.
    Arbique JC, Poyart C, Trieu-Cuot P, Quesne G, Carvalho Mda G, Steigerwalt AG, Morey RE, Jackson D, Davidson RJ, Facklam RR (2004) Accuracy of phenotypic and genotypic testing for identification of Streptococcus pneumoniae and description of Streptococcus pseudopneumoniae sp. nov. J Clin Microbiol 42:4686–4696PubMedCentralPubMedCrossRefGoogle Scholar
  6. 6.
    Picard FJ, Ke D, Boudreau DK, Boissinot M, Huletsky A, Richard D, Ouellette M, Roy PH, Bergeron MG (2004) Use of tuf sequences for genus-specific PCR detection and phylogenetic analysis of 28 streptococcal species. J Clin Microbiol 42:3686–3695PubMedCentralPubMedCrossRefGoogle Scholar
  7. 7.
    Poyart C, Quesne G, Trieu-Cuot P (2002) Taxonomic dissection of the Streptococcus bovis group by analysis of manganese-dependent superoxide dismutase gene (sodA) sequences: reclassification of ‘Streptococcus infantarius subsp. coli’ as Streptococcus lutetiensis sp. nov. and of Streptococcus bovis biotype II.2 as Streptococcus pasterianus sp. nov. Int J Syst Evol Microbiol 52:1247–1255PubMedCrossRefGoogle Scholar
  8. 8.
    Facklam R (2002) What happened to the streptococci: overview of taxonomic and nomenclature changes. Clin Microbiol Rev 15:613–630PubMedCentralPubMedCrossRefGoogle Scholar
  9. 9.
    Wessels E, Schelfaut JJG, Bernards AT, Claas ECJ (2012) Evaluation of several biochemical and molecular techniques for identification of Streptococcus pneumoniae and Streptococcus pseudopneumoniae and their detection in respiratory samples. J Clin Microbiol 50:1171–1177PubMedCentralPubMedCrossRefGoogle Scholar
  10. 10.
    Ikryannikova LN, Lapin KN, Malakhova MV, Filimonova AV, Ilina EN, Dubovickaya VA, Sidorenko SV, Govorun VM (2011) Misidentification of alpha-hemolytic streptococci by routine tests in clinical practice. Infect Genet Evol 11:1709–1715PubMedCrossRefGoogle Scholar
  11. 11.
    Bascomb S, Manafi M (1998) Use of enzyme tests in characterization and identification of aerobic and facultatively anaerobic gram-positive cocci. Clin Microbiol Rev 11:318–340PubMedCentralPubMedGoogle Scholar
  12. 12.
    Chatzigeorgiou K-S, Sergentanis TN, Tsiodras S, Hamodrakas SJ, Bagos PG (2011) Phoenix 100 versus Vitek 2 in the identification of gram-positive and gram-negative bacteria: a comprehensive meta-analysis. J Clin Microbiol 49:3284–3291PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Summanen PH, Rowlinson M-C, Wooton J, Finegold SM (2009) Evaluation of genotypic and phenotypic methods for differentiation of the members of the Anginosus group streptococci. Eur J Clin Microbiol Infect Dis 28:1123–1128PubMedCentralPubMedCrossRefGoogle Scholar
  14. 14.
    Teles C, Smith A, Ramage G, Lang S (2011) Identification of clinically relevant viridans group streptococci by phenotypic and genotypic analysis. Eur J Clin Microbiol Infect Dis 30:243–250PubMedCrossRefGoogle Scholar
  15. 15.
    Bizzini A, Durussel C, Bille J, Greub G, Prod’hom G (2010) Performance of matrix-assisted laser desorption ionization-time of flight mass spectrometry for identification of bacterial strains routinely isolated in a clinical microbiology laboratory. J Clin Microbiol 48:1549–1554PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Neville SA, LeCordier A, Ziochos H, Chater MJ, Gosbell IB, Maley MW, van Hal SJ (2011) Utility of matrix-assisted laser desorption ionization-time of flight mass spectrometry following introduction for routine laboratory bacterial identification. J Clin Microbiol 49:2980–2984PubMedCentralPubMedCrossRefGoogle Scholar
  17. 17.
    Seng P, Drancourt M, Gouriet F, La Scola B, Fournier P-E, Rolain JM, Raoult D (2009) Ongoing revolution in bacteriology: routine identification of bacteria by matrix-assisted laser desorption ionization time-of-flight mass spectrometry. Clin Infect Dis 49:543–551PubMedCrossRefGoogle Scholar
  18. 18.
    Haanperä M, Jalava J, Huovinen P, Meurman O, Rantakokko-Jalava K (2007) Identification of alpha-hemolytic streptococci by pyrosequencing the 16S rRNA gene and by use of Vitek 2. J Clin Microbiol 45:762–770PubMedCentralPubMedCrossRefGoogle Scholar
  19. 19.
    Scholz CFP, Poulsen K, Kilian M (2012) Novel molecular method for identification of Streptococcus pneumoniae applicable to clinical microbiology and 16S rRNA sequence-based microbiome studies. J Clin Microbiol 50:1968–1973PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Gavin PJ, Warren JR, Obias AA, Collins SM, Peterson LR (2002) Evaluation of the Vitek 2 system for rapid identification of clinical isolates of gram-negative bacilli and members of the family Streptococcaceae. Eur J Clin Microbiol Infect Dis 21:869–874PubMedGoogle Scholar
  21. 21.
    Davies AP, Reid M, Hadfield SJ, Johnston S, Mikhail J, Harris LG, Jenkinson HF, Berry N, Lewis AM, El-Bouri K, Mack D (2012) Identification of clinical isolates of α-hemolytic streptococci by 16S rRNA gene sequencing, matrix-assisted laser desorption ionization-time of flight mass spectrometry using MALDI Biotyper, and conventional phenotypic methods: a comparison. J Clin Microbiol 50:4087–4090PubMedCentralPubMedCrossRefGoogle Scholar
  22. 22.
    Alatoom AA, Cunningham SA, Ihde SM, Mandrekar J, Patel R (2011) Comparison of direct colony method versus extraction method for identification of gram-positive cocci by use of Bruker Biotyper matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 49:2868–2873PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Friedrichs C, Rodloff AC, Chhatwal GS, Schellenberger W, Eschrich K (2007) Rapid identification of viridans streptococci by mass spectrometric discrimination. J Clin Microbiol 45:2392–2397PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Rychert J, Burnham C-AD, Bythrow M, Garner OB, Ginocchio CC, Jenneman R, Lewinski MA, Manji R, Mochon AB, Procop GW, Richter SS, Sercia L, Westblade LF, Ferraro MJ, Branda JA (2013) Multicenter evaluation of the VITEK MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system for identification of Gram-positive aerobic bacteria. J Clin Microbiol 51:2225–2231PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    López Roa P, Sánchez Carrillo C, Marín M, Romero F, Cercenado E, Bouza E (2013) Value of matrix-assisted laser desorption ionization-time of flight for routine identification of viridans group streptococci causing bloodstream infections. Clin Microbiol Infect 19:438–444PubMedCrossRefGoogle Scholar
  26. 26.
    De Bel A, Wybo I, Piérard D, Lauwers S (2010) Correct implementation of matrix-assisted laser desorption ionization-time of flight mass spectrometry in routine clinical microbiology. J Clin Microbiol 48:1991–1992PubMedCentralPubMedCrossRefGoogle Scholar
  27. 27.
    van Veen SQ, Claas ECJ, Kuijper EJ (2010) High-throughput identification of bacteria and yeast by matrix-assisted laser desorption ionization-time of flight mass spectrometry in conventional medical microbiology laboratories. J Clin Microbiol 48:900–907PubMedCentralPubMedCrossRefGoogle Scholar
  28. 28.
    Martiny D, Busson L, Wybo I, El Haj RA, Dediste A, Vandenberg O (2012) Comparison of the Microflex LT and Vitek MS systems for routine identification of bacteria by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:1313–1325PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Dubois D, Segonds C, Prere M-F, Marty N, Oswald E (2013) Identification of clinical Streptococcus pneumoniae isolates among other alpha and nonhemolytic streptococci by use of the Vitek MS matrix-assisted laser desorption ionization-time of flight mass spectrometry system. J Clin Microbiol 51:1861–1867PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Branda JA, Markham RP, Garner CD, Rychert JA, Ferraro MJ (2013) Performance of the Vitek MS v2.0 system in distinguishing Streptococcus pneumoniae from nonpneumococcal species of the Streptococcus mitis group. J Clin Microbiol 51:3079–3082PubMedCentralPubMedCrossRefGoogle Scholar
  31. 31.
    Wester CW, Ariga D, Nathan C, Rice TW, Pulvirenti J, Patel R, Kocka F, Ortiz J, Weinstein RA (2002) Possible overestimation of penicillin resistant Streptococcus pneumoniae colonization rates due to misidentification of oropharyngeal streptococci. Diagn Microbiol Infect Dis 42:263–268PubMedCrossRefGoogle Scholar
  32. 32.
    Welker M (2011) Proteomics for routine identification of microorganisms. Proteomics 11:3143–3153PubMedCrossRefGoogle Scholar
  33. 33.
    Werno AM, Christner M, Anderson TP, Murdoch DR (2012) Differentiation of Streptococcus pneumoniae from nonpneumococcal streptococci of the Streptococcus mitis group by matrix-assisted laser desorption ionization-time of flight mass spectrometry. J Clin Microbiol 50:2863–2867PubMedCentralPubMedCrossRefGoogle Scholar
  34. 34.
    Ikryannikova LN, Filimonova AV, Malakhova MV, Savinova T, Filimonova O, Ilina EN, Dubovickaya VA, Sidorenko SV, Govorun VM (2013) Discrimination between Streptococcus pneumoniae and Streptococcus mitis based on sorting of their MALDI mass spectra. Clin Microbiol Infect 19:1066–1071. doi: 10.1111/1469-0691.12113, Epub ahead of print

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • P. Kärpänoja
    • 1
  • I. Harju
    • 2
  • K. Rantakokko-Jalava
    • 2
  • M. Haanperä
    • 3
  • H. Sarkkinen
    • 1
  1. 1.Department of Clinical MicrobiologyPäijät-Häme Social and Health Care Group, Center of Medical ServicesLahtiFinland
  2. 2.Clinical Microbiology LaboratoryTurku University HospitalTurkuFinland
  3. 3.Antimicrobial Resistance UnitNational Institute for Health and WelfareTurkuFinland

Personalised recommendations