Occurrence of virulence genes, 16S rRNA methylases, and plasmid-mediated quinolone resistance genes in CTX-M-producing Escherichia coli from Pakistan

  • M. A. Habeeb
  • A. Haque
  • A. Iversen
  • C. G. Giske


The aim of the study was to conduct a comprehensive molecular characterization of extended-spectrum β-lactamase (ESBL)-producing Escherichia coli collected from Pakistan. Genetic relatedness among 98 ESBL-producing E. coli was measured by pulsed-field gel electrophoresis (PFGE). The presence of genes encoding ESBLs, virulence factors (VFs), 16S rRNA methylases, plasmid-mediated quinolone resistance (PMQR) encoding elements, plasmid replicon types, phylogenetic groups of E. coli, prevalence of the worldwide disseminated clone E. coli ST131, and phylogrouping of CTX-M enzymes was investigated by polymerase chain reaction (PCR). All isolates carried bla CTX-M genes and, except for one isolate from CTX-M phylogroup 9, they all belonged to CTX-M phylogroup 1. The isolates were genetically diverse with PFGE. Phylogenetic group D (36 %) was most abundant in this collection of E. coli, whereas isolates belonging to B2 (22 %) had the highest content of virulence genes. PMQR genes were found in 84.6 % of the isolates; among them, 93 % isolates were positive for variants of acetyltransferases (aac(6′)-lb-cr), whereas qnrB, qepA, and qnrS were present in 11 %, 5 %, and 4 % of the isolates, respectively. Only 3 % of the isolates contained genes encoding 16S rRNA methylases. The most abundant replicon type was IncF (96 %), and 18 % of the isolates belonged to the ST131 clone. Out of 34 investigated VFs, 24 genes encoding different types of adhesins, protectins, toxins, siderophores, and other VFs were found. Although the isolates in this collection were highly resistant to many antimicrobials, susceptibility to amikacin and meropenem was retained.


Phylogenetic Group Multiplex PCRs ST131 Clone Replicon Type Simplex Polymerase Chain Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Conflict of interest

The authors declare that they have no conflict of interest.


  1. 1.
    Blanco M, Alonso MP, Nicolas-Chanoine MH, Dahbi G, Mora A, Blanco JE et al (2009) Molecular epidemiology of Escherichia coli producing extended-spectrum β-lactamases in Lugo (Spain): dissemination of clone O25b:H4-ST131 producing CTX-M-15. J Antimicrob Chemother 63(6):1135–1141PubMedCrossRefGoogle Scholar
  2. 2.
    Naseer U, Sundsfjord A (2011) The CTX-M conundrum: dissemination of plasmids and Escherichia coli clones. Microb Drug Resist 17(1):83–97PubMedCrossRefGoogle Scholar
  3. 3.
    Oteo J, Delgado-Iribarren A, Vega D, Bautista V, Rodríguez MC, Velasco M et al (2008) Emergence of imipenem resistance in clinical Escherichia coli during therapy. Int J Antimicrob Agents 32(6):534–537PubMedCrossRefGoogle Scholar
  4. 4.
    Woodford N, Turton JF, Livermore DM (2011) Multiresistant Gram-negative bacteria: the role of high-risk clones in the dissemination of antibiotic resistance. FEMS Microbiol Rev 35(5):736–755PubMedCrossRefGoogle Scholar
  5. 5.
    Clermont O, Dhanji H, Upton M, Gibreel T, Fox A, Boyd D et al (2009) Rapid detection of the O25b-ST131 clone of Escherichia coli encompassing the CTX-M-15-producing strains. J Antimicrob Chemother 64(2):274–277PubMedCrossRefGoogle Scholar
  6. 6.
    Soge OO, Adeniyi BA, Roberts MC (2006) New antibiotic resistance genes associated with CTX-M plasmids from uropathogenic Nigerian Klebsiella pneumoniae. J Antimicrob Chemother 58(5):1048–1053PubMedCrossRefGoogle Scholar
  7. 7.
    Cantón R (2009) Antibiotic resistance genes from the environment: a perspective through newly identified antibiotic resistance mechanisms in the clinical setting. Clin Microbiol Infect 15:20–25PubMedCrossRefGoogle Scholar
  8. 8.
    Shin SY, Kwon KC, Park JW, Song JH, Ko YH, Sung JY et al (2009) Characteristics of aac(6′)-Ib-cr gene in extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolated from Chungnam area. Korean J Lab Med 29(6):541–550PubMedCrossRefGoogle Scholar
  9. 9.
    Hussain M, Hasan F, Shah AA, Hameed A, Jung M, Rayamajhi N et al (2011) Prevalence of class A and AmpC β-lactamases in clinical Escherichia coli isolates from Pakistan Institute of Medical Science, Islamabad, Pakistan. Jpn J Infect Dis 64(3):249–252PubMedGoogle Scholar
  10. 10.
    Clinical and Laboratory Standards Institute (CLSI) (2012) Performance standards for antimicrobial susceptibility testing; 22nd informational supplement. CLSI document M100-S22. CLSI, WayneGoogle Scholar
  11. 11.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2012) Breakpoint tables for interpretation of MICs and zone diameters. Version 2.0Google Scholar
  12. 12.
    Tofteland S, Haldorsen B, Dahl KH, Simonsen GS, Steinbakk M, Walsh TR et al (2007) Effects of phenotype and genotype on methods for detection of extended-spectrum-β-lactamase-producing clinical isolates of Escherichia coli and Klebsiella pneumoniae in Norway. J Clin Microbiol 45(1):199–205PubMedCentralPubMedCrossRefGoogle Scholar
  13. 13.
    Birkett CI, Ludlam HA, Woodford N, Brown DF, Brown NM, Roberts MT et al (2007) Real-time TaqMan PCR for rapid detection and typing of genes encoding CTX-M extended-spectrum β-lactamases. J Med Microbiol 56(Pt 1):52–55PubMedCrossRefGoogle Scholar
  14. 14.
    Ribot EM, Fair MA, Gautom R, Cameron DN, Hunter SB, Swaminathan B et al (2006) Standardization of pulsed-field gel electrophoresis protocols for the subtyping of Escherichia coli O157:H7, Salmonella, and Shigella for PulseNet. Foodborne Pathog Dis 3(1):59–67PubMedCrossRefGoogle Scholar
  15. 15.
    Castanheira M, Fritsche TR, Sader HS, Jones RN (2008) RmtD 16S RNA methylase in epidemiologically unrelated spm-1-producing Pseudomonas aeruginosa isolates from Brazil. Antimicrob Agents Chemother 52(4):1587–1588, author reply 1588PubMedCentralPubMedCrossRefGoogle Scholar
  16. 16.
    Zhou TL, Chen XJ, Zhou MM, Zhao YJ, Luo XH, Bao QY (2011) Prevalence of plasmid-mediated quinolone resistance in Escherichia coli isolates in Wenzhou, Southern China, 2002–2008. Jpn J Infect Dis 64(1):55–57PubMedGoogle Scholar
  17. 17.
    Park CH, Robicsek A, Jacoby GA, Sahm D, Hooper DC (2006) Prevalence in the United States of aac(6′)-Ib-cr encoding a ciprofloxacin-modifying enzyme. Antimicrob Agents Chemother 50(11):3953–3955PubMedCentralPubMedCrossRefGoogle Scholar
  18. 18.
    Carattoli A, Bertini A, Villa L, Falbo V, Hopkins KL, Threlfall EJ (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63(3):219–228PubMedCrossRefGoogle Scholar
  19. 19.
    Clermont O, Bonacorsi S, Bingen E (2000) Rapid and simple determination of the Escherichia coli phylogenetic group. Appl Environ Microbiol 66(10):4555–4558PubMedCentralPubMedCrossRefGoogle Scholar
  20. 20.
    Clermont O, Johnson JR, Menard M, Denamur E (2007) Determination of Escherichia coli O types by allele-specific polymerase chain reaction: application to the O types involved in human septicemia. Diagn Microbiol Infect Dis 57(2):129–136PubMedCrossRefGoogle Scholar
  21. 21.
    Johnson JR, Stell AL (2000) Extended virulence genotypes of Escherichia coli strains from patients with urosepsis in relation to phylogeny and host compromise. J Infect Dis 181(1):261–272PubMedCrossRefGoogle Scholar
  22. 22.
    Moulin-Schouleur M, Schouler C, Tailliez P, Kao MR, Brée A, Germon P et al (2006) Common virulence factors and genetic relationships between O18:K1:H7 Escherichia coli isolates of human and avian origin. J Clin Microbiol 44(10):3484–3492PubMedCentralPubMedCrossRefGoogle Scholar
  23. 23.
    Tivendale KA, Allen JL, Ginns CA, Crabb BS, Browning GF (2004) Association of iss and iucA, but not tsh, with plasmid-mediated virulence of avian pathogenic Escherichia coli. Infect Immun 72(11):6554–6560PubMedCentralPubMedCrossRefGoogle Scholar
  24. 24.
    Johnson JR, Gajewski A, Lesse AJ, Russo TA (2003) Extraintestinal pathogenic Escherichia coli as a cause of invasive nonurinary infections. J Clin Microbiol 41(12):5798–5802PubMedCentralPubMedCrossRefGoogle Scholar
  25. 25.
    Johnson JR, Russo TA, Tarr PI, Carlino U, Bilge SS, Vary JC Jr et al (2000) Molecular epidemiological and phylogenetic associations of two novel putative virulence genes, iha and iroN (E. coli), among Escherichia coli isolates from patients with urosepsis. Infect Immun 68(5):3040–3047PubMedCentralPubMedCrossRefGoogle Scholar
  26. 26.
    Gannon VP, D’Souza S, Graham T, King RK, Rahn K, Read S (1997) Use of the flagellar H7 gene as a target in multiplex PCR assays and improved specificity in identification of enterohemorrhagic Escherichia coli strains. J Clin Microbiol 35(3):656–662PubMedCentralPubMedGoogle Scholar
  27. 27.
    Bauer RJ, Zhang L, Foxman B, Siitonen A, Jantunen ME, Saxen H et al (2002) Molecular epidemiology of 3 putative virulence genes for Escherichia coli urinary tract infection-usp, iha, and iroN (E. coli). J Infect Dis 185(10):1521–1524PubMedCrossRefGoogle Scholar
  28. 28.
    Hopkins KL, Liebana E, Villa L, Batchelor M, Threlfall EJ, Carattoli A (2006) Replicon typing of plasmids carrying CTX-M or CMY β-lactamases circulating among Salmonella and Escherichia coli isolates. Antimicrob Agents Chemother 50(9):3203–3206PubMedCentralPubMedCrossRefGoogle Scholar
  29. 29.
    Mshana SE, Imirzalioglu C, Hossain H, Hain T, Domann E, Chakraborty T (2009) Conjugative IncFI plasmids carrying CTX-M-15 among Escherichia coli ESBL producing isolates at a University hospital in Germany. BMC Infect Dis 9:97PubMedCentralPubMedCrossRefGoogle Scholar
  30. 30.
    Marcadé G, Deschamps C, Boyd A, Gautier V, Picard B, Branger C et al (2009) Replicon typing of plasmids in Escherichia coli producing extended-spectrum β-lactamases. J Antimicrob Chemother 63(1):67–71PubMedCrossRefGoogle Scholar
  31. 31.
    Carattoli A (2008) Plasmids in clinically significant Gram-negative bacteria. Available online at:
  32. 32.
    Mokracka J, Koczura R, Jabłońska L, Kaznowski A (2011) Phylogenetic groups, virulence genes and quinolone resistance of integron-bearing Escherichia coli strains isolated from a wastewater treatment plant. Antonie Van Leeuwenhoek 99(4):817–824PubMedCentralPubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. A. Habeeb
    • 1
    • 2
    • 3
    • 4
  • A. Haque
    • 1
    • 2
  • A. Iversen
    • 3
  • C. G. Giske
    • 3
  1. 1.Health Biotechnology DivisionNational Institute for Biotechnology and Genetic Engineering (NIBGE)FaisalabadPakistan
  2. 2.Pakistan Institute of Engineering and Applied Sciences (PIEAS)NilorePakistan
  3. 3.Clinical Microbiology L2:02, Karolinska Institutet—MTCKarolinska University Hospital SolnaStockholmSweden
  4. 4.Institute of Molecular Biology and BiotechnologyThe University of LahoreLahorePakistan

Personalised recommendations