Advertisement

Circulating galectin-3 in infections and non-infectious inflammatory diseases

  • J. ten OeverEmail author
  • E. J. Giamarellos-Bourboulis
  • F. L. van de Veerdonk
  • F. F. Stelma
  • A. Simon
  • M. Janssen
  • M. Johnson
  • A. Pachot
  • B.-J. Kullberg
  • L. A. B. Joosten
  • M. G. Netea
Article

Abstract

Recent studies point to a dual role for galectin-3 as both a circulating damage-associated molecular pattern and a cell membrane-associated pattern recognition receptor. The aim of this study was to assess the potential of circulating galectin-3 for discriminating between infections and non-infectious inflammatory disorders on the one hand, and between fungal and bacterial infections on the other. Galectin-3 and C-reactive protein (CRP) were measured in the plasma of 127 patients with either non-infectious inflammatory disorders (gout, autoinflammatory syndrome or pancreatitis) or an infection (viral lower respiratory tract infection, bacterial sepsis or candidaemia). Circulating galectin-3 concentrations were increased in patients with infections when compared with healthy volunteers or patients with non-infectious inflammatory diseases. At cut-off values with a specificity of 95 %, the sensitivity of galectin-3 (>20.6 ng/ml) to discriminate between an infection and non-infectious inflammation was higher than that of CRP (>156 mg/l): 43 % [95 % confidence interval (CI) 33–53 %] versus 27 % (95 % CI 19–37 %), p = 0.03. After exclusion of patients with CRP <156 mg/l, galectin-3 concentration >20.6 ng/ml could identify 41 % (95 % CI 29–53 %) of the patients with an infection at the cost of one false-positive with non-infectious inflammation. Using this sequential approach, 57 % of the patients with an infection could be selected. Galectin-3 concentrations were similar in patients with bacterial and Candida sepsis, while being lower in viral respiratory infections. Although galectin-3 does not discriminate between bacterial and Candida sepsis, the sequential use of CRP and galectin-3 in distinguishing infectious diseases from non-infectious inflammation may be superior to CRP alone.

Keywords

Gout Invasive Candidiasis Bacterial Sepsis Autoinflammatory Syndrome Candida Sepsis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This study was partly supported by an unrestricted research grant of Institut Mérieux. J.t.O. was supported by the European Regional Development Fund—province of Gelderland project number 2009-010034. M.G.N. was supported by a European Research Council grant (#310372).

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. 1.
    Henderson NC, Sethi T (2009) The regulation of inflammation by galectin-3. Immunol Rev 230(1):160–171. doi: 10.1111/j.1600-065X.2009.00794.x PubMedCrossRefGoogle Scholar
  2. 2.
    Sato S, St-Pierre C, Bhaumik P, Nieminen J (2009) Galectins in innate immunity: dual functions of host soluble beta-galactoside-binding lectins as damage-associated molecular patterns (DAMPs) and as receptors for pathogen-associated molecular patterns (PAMPs). Immunol Rev 230(1):172–187. doi: 10.1111/j.1600-065X.2009.00790.x PubMedCrossRefGoogle Scholar
  3. 3.
    Nieminen J, Kuno A, Hirabayashi J, Sato S (2007) Visualization of galectin-3 oligomerization on the surface of neutrophils and endothelial cells using fluorescence resonance energy transfer. J Biol Chem 282(2):1374–1383. doi: 10.1074/jbc.M604506200 PubMedCrossRefGoogle Scholar
  4. 4.
    Partridge EA, Le Roy C, Di Guglielmo GM, Pawling J, Cheung P, Granovsky M, Nabi IR, Wrana JL, Dennis JW (2004) Regulation of cytokine receptors by Golgi N-glycan processing and endocytosis. Science 306(5693):120–124. doi: 10.1126/science.1102109 PubMedCrossRefGoogle Scholar
  5. 5.
    Fradin C, Poulain D, Jouault T (2000) beta-1,2-linked oligomannosides from Candida albicans bind to a 32-kilodalton macrophage membrane protein homologous to the mammalian lectin galectin-3. Infect Immun 68(8):4391–4398PubMedCrossRefGoogle Scholar
  6. 6.
    Linden JR, De Paepe ME, Laforce-Nesbitt SS, Bliss JM (2013) Galectin-3 plays an important role in protection against disseminated candidiasis. Med Mycol. doi: 10.3109/13693786.2013.770607 PubMedGoogle Scholar
  7. 7.
    Jouault T, El Abed-El Behi M, Martínez-Esparza M, Breuilh L, Trinel PA, Chamaillard M, Trottein F, Poulain D (2006) Specific recognition of Candida albicans by macrophages requires galectin-3 to discriminate Saccharomyces cerevisiae and needs association with TLR2 for signaling. J Immunol 177(7):4679–4687PubMedGoogle Scholar
  8. 8.
    Esteban A, Popp MW, Vyas VK, Strijbis K, Ploegh HL, Fink GR (2011) Fungal recognition is mediated by the association of dectin-1 and galectin-3 in macrophages. Proc Natl Acad Sci U S A 108(34):14270–14275. doi: 10.1073/pnas.1111415108 PubMedCrossRefGoogle Scholar
  9. 9.
    Kohatsu L, Hsu DK, Jegalian AG, Liu FT, Baum LG (2006) Galectin-3 induces death of Candida species expressing specific beta-1,2-linked mannans. J Immunol 177(7):4718–4726PubMedGoogle Scholar
  10. 10.
    Hanley JA, McNeil BJ (1983) A method of comparing the areas under receiver operating characteristic curves derived from the same cases. Radiology 148(3):839–843PubMedGoogle Scholar
  11. 11.
    Johnson MD, Plantinga TS, van de Vosse E, Velez Edwards DR, Smith PB, Alexander BD, Yang JC, Kremer D, Laird GM, Oosting M, Joosten LA, van der Meer JW, van Dissel JT, Walsh TJ, Perfect JR, Kullberg BJ, Scott WK, Netea MG (2012) Cytokine gene polymorphisms and the outcome of invasive candidiasis: a prospective cohort study. Clin Infect Dis 54(4):502–510. doi: 10.1093/cid/cir827 PubMedCrossRefGoogle Scholar
  12. 12.
    de Boer RA, van Veldhuisen DJ, Gansevoort RT, Muller Kobold AC, van Gilst WH, Hillege HL, Bakker SJ, van der Harst P (2012) The fibrosis marker galectin-3 and outcome in the general population. J Intern Med 272(1):55–64. doi: 10.1111/j.1365-2796.2011.02476.x PubMedCrossRefGoogle Scholar
  13. 13.
    Senapati S, Chaturvedi P, Chaney WG, Chakraborty S, Gnanapragassam VS, Sasson AR, Batra SK (2011) Novel INTeraction of MUC4 and galectin: potential pathobiological implications for metastasis in lethal pancreatic cancer. Clin Cancer Res 17(2):267–274. doi: 10.1158/1078-0432.CCR-10-1937 PubMedCrossRefGoogle Scholar
  14. 14.
    Lok DJ, Van Der Meer P, de la Porte PW, Lipsic E, Van Wijngaarden J, Hillege HL, van Veldhuisen DJ (2010) Prognostic value of galectin-3, a novel marker of fibrosis, in patients with chronic heart failure: data from the DEAL-HF study. Clin Res Cardiol 99(5):323–328. doi: 10.1007/s00392-010-0125-y PubMedCrossRefGoogle Scholar
  15. 15.
    Iurisci I, Tinari N, Natoli C, Angelucci D, Cianchetti E, Iacobelli S (2000) Concentrations of galectin-3 in the sera of normal controls and cancer patients. Clin Cancer Res 6(4):1389–1393PubMedGoogle Scholar
  16. 16.
    Wey SB, Mori M, Pfaller MA, Woolson RF, Wenzel RP (1988) Hospital-acquired candidemia. The attributable mortality and excess length of stay. Arch Intern Med 148(12):2642–2645PubMedCrossRefGoogle Scholar
  17. 17.
    Morrell M, Fraser VJ, Kollef MH (2005) Delaying the empiric treatment of candida bloodstream infection until positive blood culture results are obtained: a potential risk factor for hospital mortality. Antimicrob Agents Chemother 49(9):3640–3645. doi: 10.1128/AAC.49.9.3640-3645.2005 PubMedCrossRefGoogle Scholar
  18. 18.
    León C, Ruiz-Santana S, Saavedra P, Galván B, Blanco A, Castro C, Balasini C, Utande-Vázquez A, González de Molina FJ, Blasco-Navalproto MA, López MJ, Charles PE, Martín E, Hernández-Viera MA; Cava Study Group (2009) Usefulness of the “Candida score” for discriminating between Candida colonization and invasive candidiasis in non-neutropenic critically ill patients: a prospective multicenter study. Crit Care Med 37(5):1624–1633. doi: 10.1097/CCM.0b013e31819daa14 PubMedCrossRefGoogle Scholar
  19. 19.
    Cuenca-Estrella M, Verweij PE, Arendrup MC, Arikan-Akdagli S, Bille J, Donnelly JP, Jensen HE, Lass-Flörl C, Richardson MD, Akova M, Bassetti M, Calandra T, Castagnola E, Cornely OA, Garbino J, Groll AH, Herbrecht R, Hope WW, Kullberg BJ, Lortholary O, Meersseman W, Petrikkos G, Roilides E, Viscoli C, Ullmann AJ; ESCMID Fungal Infection Study Group (2012) ESCMID* guideline for the diagnosis and management of Candida diseases 2012: diagnostic procedures. Clin Microbiol Infect 18(Suppl 7):9–18. doi: 10.1111/1469-0691.12038 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • J. ten Oever
    • 1
    • 3
    • 8
    Email author
  • E. J. Giamarellos-Bourboulis
    • 4
  • F. L. van de Veerdonk
    • 1
    • 3
  • F. F. Stelma
    • 2
    • 3
  • A. Simon
    • 1
    • 3
  • M. Janssen
    • 5
  • M. Johnson
    • 6
  • A. Pachot
    • 7
  • B.-J. Kullberg
    • 1
    • 3
  • L. A. B. Joosten
    • 1
    • 3
  • M. G. Netea
    • 1
    • 3
  1. 1.Department of MedicineRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
  2. 2.Department of Medical MicrobiologyRadboud University Nijmegen Medical CenterNijmegenThe Netherlands
  3. 3.Nijmegen Institute for Infection, Inflammation & Immunity (N4i)NijmegenThe Netherlands
  4. 4.4th Department of Internal MedicineUniversity of Athens, Medical SchoolAthensGreece
  5. 5.Department of RheumatologyRijnstate HospitalArnhemThe Netherlands
  6. 6.Duke University Medical CenterDurhamUSA
  7. 7.Biomarker DepartmentbioMérieuxMarcy l’EtoileFrance
  8. 8.Department of Internal Medicine (463)Radboud University Nijmegen Medical CenterNijmegenThe Netherlands

Personalised recommendations