Cryptococcosis: epidemiology, fungal resistance, and new alternatives for treatment

  • F. P. Gullo
  • S. A. Rossi
  • J. de C. O. Sardi
  • V. L. I. Teodoro
  • M. J. S. Mendes-Giannini
  • A. M. Fusco-Almeida
Review

Abstract

Cryptococcosis is an important systemic mycosis and the third most prevalent disease in human immunodeficiency virus (HIV)-positive individuals. The incidence of cryptococcosis is high among the 25 million people with HIV/acquired immunodeficiency syndrome (AIDS), with recent estimates indicating that there are one million cases of cryptococcal meningitis globally per year in AIDS patients. In Cryptococcus neoformans, resistance to azoles may be associated with alterations in the target enzyme encoded by the gene ERG11, lanosterol 14α-demethylase. These alterations are obtained through mutations, or by overexpressing the gene encoding. In addition, C. gattii and C. neoformans present a heteroresistance phenotype, which may be related to increased virulence. Other species beyond C. neoformans and C. gattii, such as C. laurentii, have been diagnosed mainly in patients with immunosuppression. Infections of C. albidus have been isolated in cats and marine mammals. Recent evidence suggests that the majority of infections produced by this pathogen are associated with biofilm growth, which is also related with increased resistance to antifungal agents. Therefore, there is a great need to search for alternative antifungal agents for these fungi. The search for new molecules is currently occurring from nanoparticle drugs of plant peptide origin. This article presents a brief review of the literature regarding the epidemiology of cryptococcosis, as well as fungal resistance and new alternatives for treatment.

Notes

Conflict of interest

The authors declare that they have no conflict of interest.

We thank Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) for the financial support.

References

  1. 1.
    Lanjewar DN (2011) The spectrum of clinical and pathological manifestations of AIDS in a consecutive series of 236 autopsied cases in Mumbai, India. Pathol Res Int 2011:547618Google Scholar
  2. 2.
    Prado M, Silva MB, Laurenti R, Travassos LR, Taborda CP (2009) Mortality due to systemic mycoses as a primary cause of death or in association with AIDS in Brazil: a review from 1996 to 2006. Mem Inst Oswaldo Cruz 104(3):513–521PubMedGoogle Scholar
  3. 3.
    Perfect JR, Dismukes WE, Dromer F, Goldman DL, Graybill JR, Hamill RJ, Harrison TS, Larsen RA, Lortholary O, Nguyen MH, Pappas PG, Powderly WG, Singh N, Sobel JD, Sorrell TC (2010) Clinical practice guidelines for the management of cryptococcal disease: 2010 update by the Infectious Diseases Society of America. Clin Infect Dis 50(3):291–322PubMedGoogle Scholar
  4. 4.
    Kantarcioğlu AS, Boekhout T, De Hoog GS, Theelen B, Yücel A, Ekmekci TR, Fries BC, Ikeda R, Koslu A, Altas K (2007) Subcutaneous cryptococcosis due to Cryptococcus diffluens in a patient with sporotrichoid lesions case report, features of the case isolate and in vitro antifungal susceptibilities. Med Mycol 45(2):173–181PubMedGoogle Scholar
  5. 5.
    Khawcharoenporn T, Apisarnthanarak A, Mundy LM (2007) Non-neoformans cryptococcal infections: a systematic review. Infection 35(2):51–58PubMedGoogle Scholar
  6. 6.
    Levitz SM, Specht CA (2006) The molecular basis for the immunogenicity of Cryptococcus neoformans mannoproteins. FEMS Yeast Res 6(4):513–524PubMedGoogle Scholar
  7. 7.
    Grechi J, Marinho-Carvalho M, Zancan P, Cinelli LP, Gomes AM, Rodrigues ML, Nimrichter L, Sola-Penna M (2011) Glucuronoxylomannan from Cryptococcus neoformans down-regulates the enzyme 6-phosphofructo-1-kinase of macrophages. J Biol Chem 286(17):14820–14829PubMedGoogle Scholar
  8. 8.
    Filiú WF, Wanke B, Agüena SM, Vilela VO, Macedo RC, Lazéra M (2002) Avian habitats as sources of Cryptococcus neoformans in the city of Campo Grande, Mato Grosso do Sul, Brazil. Rev Soc Bras Med Trop 35(6):591–595PubMedGoogle Scholar
  9. 9.
    Chen S, Sorrell T, Nimmo G, Speed B, Currie B, Ellis D, Marriott D, Pfeiffer T, Parr D, Byth K (2000) Epidemiology and host- and variety-dependent characteristics of infection due to Cryptococcus neoformans in Australia and New Zealand. Australasian Cryptococcal Study Group. Clin Infect Dis 31(2):499–508PubMedGoogle Scholar
  10. 10.
    Kidd SE, Hagen F, Tscharke RL, Huynh M, Bartlett KH, Fyfe M, Macdougall L, Boekhout T, Kwon-Chung KJ, Meyer W (2004) A rare genotype of Cryptococcus gattii caused the cryptococcosis outbreak on Vancouver Island (British Columbia, Canada). Proc Natl Acad Sci U S A 101(49):17258–17263PubMedGoogle Scholar
  11. 11.
    Byrnes EJ 3rd, Bildfell RJ, Frank SA, Mitchell TG, Marr KA, Heitman J (2009) Molecular evidence that the range of the Vancouver Island outbreak of Cryptococcus gattii infection has expanded into the Pacific Northwest in the United States. J Infect Dis 199(7):1081–1086PubMedGoogle Scholar
  12. 12.
    Centers for Disease Control and Prevention (CDC) (2010) Emergence of Cryptococcus gattii—Pacific Northwest, 2004–2010. MMWR Morb Mortal Wkly Rep 59(28):865–868Google Scholar
  13. 13.
    Goldman DL, Lee SC, Mednick AJ, Montella L, Casadevall A (2000) Persistent Cryptococcus neoformans pulmonary infection in the rat is associated with intracellular parasitism, decreased inducible nitric oxide synthase expression, and altered antibody responsiveness to cryptococcal polysaccharide. Infect Immun 68(2):832–838PubMedGoogle Scholar
  14. 14.
    Jong A, Wu CH, Shackleford GM, Kwon-Chung KJ, Chang YC, Chen HM, Ouyang Y, Huang SH (2008) Involvement of human CD44 during Cryptococcus neoformans infection of brain microvascular endothelial cells. Cell Microbiol 10(6):1313–1326PubMedGoogle Scholar
  15. 15.
    Jesus MS, Rodrigues WC, Barbosa G, Trilles L, Wanke B, Lazéra MdosS, Silva Md (2012) Cryptococcus neoformans carried by Odontomachus bauri ants. Mem Inst Oswaldo Cruz 107(4):466–469PubMedGoogle Scholar
  16. 16.
    Meyer W, Castañeda A, Jackson S, Huynh M, Castañeda E; IberoAmerican Cryptococcal Study Group. (2003) Molecular typing of IberoAmerican Cryptococcus neoformans isolates. Emerg Infect Dis 9(2):189–195PubMedGoogle Scholar
  17. 17.
    Firacative C, Trilles L, Meyer W (2012) MALDI-TOF MS enables the rapid identification of the major molecular types within the Cryptococcus neoformans/C. gattii species complex. PLoS One 7(5):e37566PubMedGoogle Scholar
  18. 18.
    Nishikawa MM, Lazera MS, Barbosa GG, Trilles L, Balassiano BR, Macedo RC, Bezerra CC, Pérez MA, Cardarelli P, Wanke B (2003) Serotyping of 467 Cryptococcus neoformans isolates from clinical and environmental sources in Brazil: analysis of host and regional patterns. J Clin Microbiol 41(1):73–77PubMedGoogle Scholar
  19. 19.
    Kwon-Chung KJ (1991) The discovery of creatinine assimilation in Cryptococcus neoformans, and subsequent work on the characterization of the two varieties of C. neoformans. Zentralbl Bakteriol 275(3):390–393PubMedGoogle Scholar
  20. 20.
    Passoni LF, Wanke B, Nishikawa MM, Lazéra MS (1998) Cryptococcus neoformans isolated from human dwellings in Rio de Janeiro, Brazil: an analysis of the domestic environment of AIDS patients with and without cryptococcosis. Med Mycol 36(5):305–311PubMedGoogle Scholar
  21. 21.
    González-Hein G, González-Hein J, Díaz Jarabrán MC (2010) Isolation of Cryptococcus neoformans in dry droppings of captive birds in Santiago, Chile. J Avian Med Surg 24(3):227–236PubMedGoogle Scholar
  22. 22.
    Dixit A, Carroll SF, Qureshi ST (2009) Cryptococcus gattii: an emerging cause of fungal disease in North America. Interdiscip Perspect Infect Dis 2009:840452PubMedGoogle Scholar
  23. 23.
    Faria RO, Nascente PdaS, Meinerz AR, Cleff MB, Antunes TdeA, Silveira EdaS, Nobre MdeO, Meireles MC, Mello JR (2010) Occurrence of Cryptococcus neoformans in pigeon excrement in the city of Pelotas, State of Rio Grande do Sul. Rev Soc Bras Med Trop 43(2):198–200PubMedGoogle Scholar
  24. 24.
    Day JN, Hoang TN, Duong AV, Hong CT, Diep PT, Campbell JI, Sieu TP, Hien TT, Bui T, Boni MF, Lalloo DG, Carter D, Baker S, Farrar JJ (2011) Most cases of cryptococcal meningitis in HIV-uninfected patients in Vietnam are due to a distinct amplified fragment length polymorphism-defined cluster of Cryptococcus neoformans var. grubii VN1. J Clin Microbiol 49(2):658–664PubMedGoogle Scholar
  25. 25.
    Calvo BM, Colombo AL, Fischman O, Santiago A, Thompson L, Lazera M, Telles F, Fukushima K, Nishimura K, Tanaka R, Myiajy M, Moretti-Branchini ML (2001) Antifungal susceptibilities, varieties, and electrophoretic karyotypes of clinical isolates of Cryptococcus neoformans from Brazil, Chile, and Venezuela. J Clin Microbiol 39(6):2348–2350PubMedGoogle Scholar
  26. 26.
    Escandón P, Sánchez A, Martínez M, Meyer W, Castañeda E (2006) Molecular epidemiology of clinical and environmental isolates of the Cryptococcus neoformans species complex reveals a high genetic diversity and the presence of the molecular type VGII mating type a in Colombia. FEMS Yeast Res 6(4):625–635PubMedGoogle Scholar
  27. 27.
    Severo LC, de Mattos Oliveira F, Londero AT (1999) Cryptococcosis due to Cryptococcus neoformans var. gattii in Brazilian patients with AIDS. Report of three cases. Rev Iberoam Micol 16(3):152–154PubMedGoogle Scholar
  28. 28.
    Byrnes EJ 3rd, Li W, Ren P, Lewit Y, Voelz K, Fraser JA, Dietrich FS, May RC, Chaturvedi S, Chaturvedi V, Heitman J (2011) A diverse population of Cryptococcus gattii molecular type VGIII in southern Californian HIV/AIDS patients. PLoS Pathog 7(9):e1002205PubMedGoogle Scholar
  29. 29.
    MacDougall L, Fyfe M, Romney M, Starr M, Galanis E (2011) Risk factors for Cryptococcus gattii infection, British Columbia, Canada. Emerg Infect Dis 17(2):193–199PubMedGoogle Scholar
  30. 30.
    Hagen F, Colom MF, Swinne D, Tintelnot K, Iatta R, Montagna MT, Torres-Rodriguez JM, Cogliati M, Velegraki A, Burggraaf A, Kamermans A, Sweere JM, Meis JF, Klaassen CH, Boekhout T (2012) Autochthonous and dormant Cryptococcus gattii infections in Europe. Emerg Infect Dis 18(10):1618–1624PubMedGoogle Scholar
  31. 31.
    Hagen F, Illnait-Zaragozi MT, Bartlett KH, Swinne D, Geertsen E, Klaassen CH, Boekhout T, Meis JF (2010) In vitro antifungal susceptibilities and amplified fragment length polymorphism genotyping of a worldwide collection of 350 clinical, veterinary, and environmental Cryptococcus gattii isolates. Antimicrob Agents Chemother 54(12):5139–5145PubMedGoogle Scholar
  32. 32.
    Georgi A, Schneemann M, Tintelnot K, Calligaris-Maibach RC, Meyer S, Weber R, Bosshard PP (2009) Cryptococcus gattii meningoencephalitis in an immunocompetent person 13 months after exposure. Infection 37(4):370–373PubMedGoogle Scholar
  33. 33.
    Litvintseva AP, Thakur R, Reller LB, Mitchell TG (2005) Prevalence of clinical isolates of Cryptococcus gattii serotype C among patients with AIDS in Sub-Saharan Africa. J Infect Dis 192(5):888–892PubMedGoogle Scholar
  34. 34.
    Randhawa HS, Kowshik T, Chowdhary A, Preeti Sinha K, Khan ZU, Sun S, Xu J (2008) The expanding host tree species spectrum of Cryptococcus gattii and Cryptococcus neoformans and their isolations from surrounding soil in India. Med Mycol 46(8):823–833PubMedGoogle Scholar
  35. 35.
    Firacative C, Torres G, Rodríguez MC, Escandón P (2011) First environmental isolation of Cryptococcus gattii serotype B, from Cúcuta, Colombia. Biomedica 31(1):118–123PubMedGoogle Scholar
  36. 36.
    Martins LM, Wanke B, Lazéra MdosS, Trilles L, Barbosa GG, de Macedo RC, Cavalcanti MdoA, Eulálio KD, de Castro JA, da Silva AS, do Nacimento FF, Gouveia VA, do Monte SJ (2011) Genotypes of Cryptococcus neoformans and Cryptococcus gattii as agents of endemic cryptococcosis in Teresin, Piauí (northeastern Brazil). Mem Inst Oswaldo Cruz 106(6):725–730PubMedGoogle Scholar
  37. 37.
    Colom MF, Frasés S, Ferrer C, Jover A, Andreu M, Reus S, Sánchez M, Torres-Rodríguez JM (2005) First case of human cryptococcosis due to Cryptococcus neoformans var. gattii in Spain. J Clin Microbiol 43(7):3548–3550PubMedGoogle Scholar
  38. 38.
    McCurdy LH, Morrow JD (2003) Infections due to non-neoformans cryptococcal species. Compr Ther 29(2–3):95–101PubMedGoogle Scholar
  39. 39.
    Cheng MF, Chiou CC, Liu YC, Wang HZ, Hsieh KS (2001) Cryptococcus laurentii fungemia in a premature neonate. J Clin Microbiol 39(4):1608–1611PubMedGoogle Scholar
  40. 40.
    Averbuch D, Boekhoutt T, Falk R, Engelhard D, Shapiro M, Block C, Polacheck I (2002) Fungemia in a cancer patient caused by fluconazole-resistant Cryptococcus laurentii. Med Mycol 40(5):479–484PubMedGoogle Scholar
  41. 41.
    Shankar EM, Kumarasamy N, Bella D, Renuka S, Kownhar H, Suniti S, Rajan R, Rao UA (2006) Pneumonia and pleural effusion due to Cryptococcus laurentii in a clinically proven case of AIDS. Can Respir J 13(5):275–278PubMedGoogle Scholar
  42. 42.
    Furman-Kuklińska K, Naumnik B, Myśliwiec M (2009) Fungaemia due to Cryptococcus laurentii as a complication of immunosuppressive therapy—a case report. Adv Med Sci 54(1):116–119PubMedGoogle Scholar
  43. 43.
    Sugita T, Takashima M, Ikeda R, Nakase T, Shinoda T (2001) Intraspecies diversity of Cryptococcus albidus isolated from humans as revealed by sequences of the internal transcribed spacer regions. Microbiol Immunol 45(4):291–297PubMedGoogle Scholar
  44. 44.
    Kano R, Kitagawat M, Oota S, Oosumi T, Murakami Y, Tokuriki M, Hasegawa A (2008) First case of feline systemic Cryptococcus albidus infection. Med Mycol 46(1):75–77PubMedGoogle Scholar
  45. 45.
    Mcleland S, Duncan C, Spraker T, Wheeler E, Lockhart SR, Gulland F (2012) Cryptococcus albidus infection in a California sea lion (Zalophus californianus). J Wildl Dis 48(4):1030–1034PubMedGoogle Scholar
  46. 46.
    Leite DP Jr, Amadio JV, Martins ER, Simões SA, Yamamoto AC, Leal-Santos FA, Takahara DT, Hahn RC (2012) Cryptococcus spp isolated from dust microhabitat in Brazilian libraries. J Occup Med Toxicol 7(1):11PubMedGoogle Scholar
  47. 47.
    Sanglard D, Coste A, Ferrari S (2009) Antifungal drug resistance mechanisms in fungal pathogens from the perspective of transcriptional gene regulation. FEMS Yeast Res 9(7):1029–1050PubMedGoogle Scholar
  48. 48.
    Jarvis JN, Dromer F, Harrison TS, Lortholary O (2008) Managing cryptococcosis in the immunocompromised host. Curr Opin Infect Dis 21(6):596–603PubMedGoogle Scholar
  49. 49.
    Sloan D, Dlamini S, Paul N, Dedicoat M (2008) Treatment of acute cryptococcal meningitis in HIV infected adults, with an emphasis on resource-limited settings. Cochrane Database Syst Rev (4):CD005647Google Scholar
  50. 50.
    Catalán M, Montejo JC (2006) Systemic antifungals. Pharmacodynamics and pharmacokinetics. Rev Iberoam Micol 23(1):39–49PubMedGoogle Scholar
  51. 51.
    Polak A, Scholer HJ (1975) Mode of action of 5-fluorocytosine and mechanisms of resistance. Chemotherapy 21(3–4):113–130PubMedGoogle Scholar
  52. 52.
    Trösken ER, Fischer K, Völkel W, Lutz WK (2006) Inhibition of human CYP19 by azoles used as antifungal agents and aromatase inhibitors, using a new LC-MS/MS method for the analysis of estradiol product formation. Toxicology 219(1–3):33–40PubMedGoogle Scholar
  53. 53.
    Kontoyiannis DP, Lewis RE (2002) Antifungal drug resistance of pathogenic fungi. Lancet 359(9312):1135–1144PubMedGoogle Scholar
  54. 54.
    Shao LC, Sheng CQ, Zhang WN (2007) Recent advances in the study of antifungal lead compounds with new chemical scaffolds. Yao Xue Xue Bao 42(11):1129–1136PubMedGoogle Scholar
  55. 55.
    Johnson E, Espinel-Ingroff A, Szekely A, Hockey H, Troke P (2008) Activity of voriconazole, itraconazole, fluconazole and amphotericin B in vitro against 1763 yeasts from 472 patients in the voriconazole phase III clinical studies. Int J Antimicrob Agents 32(6):511–514PubMedGoogle Scholar
  56. 56.
    Guerrero A, Fries BC (2008) Phenotypic switching in Cryptococcus neoformans contributes to virulence by changing the immunological host response. Infect Immun 76(9):4322–4331PubMedGoogle Scholar
  57. 57.
    Silva PR, Rabelo RA, Terra AP, Teixeira DN (2008) Susceptibility to antifungal agents among Cryptococcus neoformans varieties isolated from patients at a university hospital. Rev Soc Bras Med Trop 41(2):158–162PubMedGoogle Scholar
  58. 58.
    Andrade-Silva L, Ferreira-Paim K, Mora DJ, Silva PR, Andrade AA, Araujo NE, Pedrosa AL, Silva-Vergara ML (2013) Susceptibility profile of clinical and environmental isolates of Cryptococcus neoformans and Cryptococcus gattii in Uberaba, Minas Gerais, Brazil. Med Mycol [Epub ahead of print]Google Scholar
  59. 59.
    Andriole VT (1998) Current and future therapy of invasive fungal infections. Curr Clin Top Infect Dis 18:19–36PubMedGoogle Scholar
  60. 60.
    Illnait-Zaragozi MT, Martínez GF, Curfs-Breuker I, Fernández CM, Boekhout T, Meis JF (2008) In vitro activity of the new azole isavuconazole (BAL4815) compared with six other antifungal agents against 162 Cryptococcus neoformans isolates from Cuba. Antimicrob Agents Chemother 52(4):1580–1582PubMedGoogle Scholar
  61. 61.
    Abruzzo GK, Flattery AM, Gill CJ, Kong L, Smith JG, Pikounis VB, Balkovec JM, Bouffard AF, Dropinski JF, Rosen H, Kropp H, Bartizal K (1997) Evaluation of the echinocandin antifungal MK-0991 (L-743,872): efficacies in mouse models of disseminated aspergillosis, candidiasis, and cryptococcosis. Antimicrob Agents Chemother 41(11):2333–2338PubMedGoogle Scholar
  62. 62.
    Espinel-Ingroff A (2009) Novel antifungal agents, targets or therapeutic strategies for the treatment of invasive fungal diseases: a review of the literature (2005–2009). Rev Iberoam Micol 26(1):15–22PubMedGoogle Scholar
  63. 63.
    White NJ (1998) Preventing antimalarial drug resistance through combinations. Drug Resist Updat 1(1):3–9PubMedGoogle Scholar
  64. 64.
    Rodríguez Tudela JL (1997) The resistance of opportunistic fungi to antifungals. Rev Clin Esp 197(Suppl 1):67–74PubMedGoogle Scholar
  65. 65.
    Pemán J, Cantón E, Espinel-Ingroff A (2009) Antifungal drug resistance mechanisms. Expert Rev Anti Infect Ther 7(4):453–460PubMedGoogle Scholar
  66. 66.
    Nosanchuk JD, Casadevall A (2003) The contribution of melanin to microbial pathogenesis. Cell Microbiol 5(4):203–223PubMedGoogle Scholar
  67. 67.
    Bryan RA, Jiang Z, Howell RC, Morgenstern A, Bruchertseifer F, Casadevall A, Dadachova E (2010) Radioimmunotherapy is more effective than antifungal treatment in experimental cryptococcal infection. J Infect Dis 202(4):633–637PubMedGoogle Scholar
  68. 68.
    Marichal P, Vanden Bossche H (1995) Mechanisms of resistance to azole antifungals. Acta Biochim Pol 42(4):509–516PubMedGoogle Scholar
  69. 69.
    Sanglard D, Ischer F, Monod M, Bille J (1997) Cloning of Candida albicans genes conferring resistance to azole antifungal agents: characterization of CDR2, a new multidrug ABC transporter gene. Microbiology 143(Pt 2):405–416PubMedGoogle Scholar
  70. 70.
    Ferreira MJ, Gyémánt N, Madureira AM, Tanaka M, Koós K, Didziapetris R, Molnár J (2005) The effects of jatrophane derivatives on the reversion of MDR1- and MRP-mediated multidrug resistance in the MDA-MB-231 (HTB-26) cell line. Anticancer Res 25(6B):4173–4178PubMedGoogle Scholar
  71. 71.
    Espinel-Ingroff A (2008) Mechanisms of resistance to antifungal agents: yeasts and filamentous fungi. Rev Iberoam Micol 25(2):101–106PubMedGoogle Scholar
  72. 72.
    Monk BC, Niimi K, Lin S, Knight A, Kardos TB, Cannon RD, Parshot R, King A, Lun D, Harding DR (2005) Surface-active fungicidal D-peptide inhibitors of the plasma membrane proton pump that block azole resistance. Antimicrob Agents Chemother 49(1):57–70PubMedGoogle Scholar
  73. 73.
    Cannon RD, Lamping E, Holmes AR, Niimi K, Baret PV, Keniya MV, Tanabe K, Niimi M, Goffeau A, Monk BC (2009) Efflux-mediated antifungal drug resistance. Clin Microbiol Rev 22(2):291–321, Table of ContentsPubMedGoogle Scholar
  74. 74.
    Prasad R, Gaur NA, Gaur M, Komath SS (2006) Efflux pumps in drug resistance of Candida. Infect Disord Drug Targets 6(2):69–83PubMedGoogle Scholar
  75. 75.
    Rodero L, Mellado E, Rodriguez AC, Salve A, Guelfand L, Cahn P, Cuenca-Estrella M, Davel G, Rodriguez-Tudela JL (2003) G484S amino acid substitution in lanosterol 14-alpha demethylase (ERG11) is related to fluconazole resistance in a recurrent Cryptococcus neoformans clinical isolate. Antimicrob Agents Chemother 47(11):3653–3656PubMedGoogle Scholar
  76. 76.
    Almeida AM, Matsumoto MT, Baeza LC, de Oliveira E Silva RB, Kleiner AA, Melhem MdeS, Mendes Giannini MJ; Laboratory Group on Cryptococcosis (2007) Molecular typing and antifungal susceptibility of clinical sequential isolates of Cryptococcus neoformans from Sao Paulo State, Brazil. FEMS Yeast Res 7(1):152–164PubMedGoogle Scholar
  77. 77.
    Sheng C, Miao Z, Ji H, Yao J, Wang W, Che X, Dong G, Lü J, Guo W, Zhang W (2009) Three-dimensional model of lanosterol 14 alpha-demethylase from Cryptococcus neoformans: active-site characterization and insights into azole binding. Antimicrob Agents Chemother 53(8):3487–3495PubMedGoogle Scholar
  78. 78.
    Sanglard D, Kuchler K, Ischer F, Pagani JL, Monod M, Bille J (1995) Mechanisms of resistance to azole antifungal agents in Candida albicans isolates from AIDS patients involve specific multidrug transporters. Antimicrob Agents Chemother 39(11):2378–2386PubMedGoogle Scholar
  79. 79.
    Marichal P, Vanden Bossche H, Odds FC, Nobels G, Warnock DW, Timmerman V, Van Broeckhoven C, Fay S, Mose-Larsen P (1997) Molecular biological characterization of an azole-resistant Candida glabrata isolate. Antimicrob Agents Chemother 41(10):2229–2237PubMedGoogle Scholar
  80. 80.
    Perea S, López-Ribot JL, Kirkpatrick WR, McAtee RK, Santillán RA, Martínez M, Calabrese D, Sanglard D, Patterson TF (2001) Prevalence of molecular mechanisms of resistance to azole antifungal agents in Candida albicans strains displaying high-level fluconazole resistance isolated from human immunodeficiency virus-infected patients. Antimicrob Agents Chemother 45(10):2676–2684PubMedGoogle Scholar
  81. 81.
    Vandeputte P, Larcher G, Bergès T, Renier G, Chabasse D, Bouchara JP (2005) Mechanisms of azole resistance in a clinical isolate of Candida tropicalis. Antimicrob Agents Chemother 49(11):4608–4615PubMedGoogle Scholar
  82. 82.
    Diaz-Guerra TM, Mellado E, Cuenca-Estrella M, Rodriguez-Tudela JL (2003) A point mutation in the 14alpha-sterol demethylase gene cyp51A contributes to itraconazole resistance in Aspergillus fumigatus. Antimicrob Agents Chemother 47(3):1120–1124PubMedGoogle Scholar
  83. 83.
    Mann PA, Parmegiani RM, Wei SQ, Mendrick CA, Li X, Loebenberg D, DiDomenico B, Hare RS, Walker SS, McNicholas PM (2003) Mutations in Aspergillus fumigatus resulting in reduced susceptibility to posaconazole appear to be restricted to a single amino acid in the cytochrome P450 14alpha-demethylase. Antimicrob Agents Chemother 47(2):577–581PubMedGoogle Scholar
  84. 84.
    Garcia-Effron G, Dilger A, Alcazar-Fuoli L, Park S, Mellado E, Perlin DS (2008) Rapid detection of triazole antifungal resistance in Aspergillus fumigatus. J Clin Microbiol 46(4):1200–1206PubMedGoogle Scholar
  85. 85.
    Sionov E, Chang YC, Garraffo HM, Kwon-Chung KJ (2009) Heteroresistance to fluconazole in Cryptococcus neoformans is intrinsic and associated with virulence. Antimicrob Agents Chemother 53(7):2804–2815PubMedGoogle Scholar
  86. 86.
    Varma A, Kwon-Chung KJ (2010) Heteroresistance of Cryptococcus gattii to fluconazole. Antimicrob Agents Chemother 54(6):2303–2311PubMedGoogle Scholar
  87. 87.
    Sionov E, Lee H, Chang YC, Kwon-Chung KJ (2010) Cryptococcus neoformans overcomes stress of azole drugs by formation of disomy in specific multiple chromosomes. PLoS Pathog 6(4):e1000848PubMedGoogle Scholar
  88. 88.
    Mondon P, Petter R, Amalfitano G, Luzzati R, Concia E, Polacheck I, Kwon-Chung KJ (1999) Heteroresistance to fluconazole and voriconazole in Cryptococcus neoformans. Antimicrob Agents Chemother 43(8):1856–1861PubMedGoogle Scholar
  89. 89.
    Bovers M, Hagen F, Kuramae EE, Hoogveld HL, Dromer F, St-Germain G, Boekhout T (2008) AIDS patient death caused by novel Cryptococcus neoformans × C. gattii hybrid. Emerg Infect Dis 14(7):1105–1108PubMedGoogle Scholar
  90. 90.
    Byrnes EJ 3rd, Li W, Lewit Y, Ma H, Voelz K, Ren P, Carter DA, Chaturvedi V, Bildfell RJ, May RC, Heitman J (2010) Emergence and pathogenicity of highly virulent Cryptococcus gattii genotypes in the northwest United States. PLoS Pathog 6(4):e1000850PubMedGoogle Scholar
  91. 91.
    Espinel-Ingroff A, Aller AI, Canton E, Castañón-Olivares LR, Chowdhary A, Cordoba S, Cuenca-Estrella M, Fothergill A, Fuller J, Govender N, Hagen F, Illnait-Zaragozi MT, Johnson E, Kidd S, Lass-Flörl C, Lockhart SR, Martins MA, Meis JF, Melhem MS, Ostrosky-Zeichner L, Pelaez T, Pfaller MA, Schell WA, St-Germain G, Trilles L, Turnidge J (2012) Cryptococcus neoformansCryptococcus gattii species complex: an international study of wild-type susceptibility endpoint distributions and epidemiological cutoff values for fluconazole, itraconazole, posaconazole, and voriconazole. Antimicrob Agents Chemother 56(11):5898–5906PubMedGoogle Scholar
  92. 92.
    Chong HS, Dagg R, Malik R, Chen S, Carter D (2010) In vitro susceptibility of the yeast pathogen Cryptococcus to fluconazole and other azoles varies with molecular genotype. J Clin Microbiol 48(11):4115–4120PubMedGoogle Scholar
  93. 93.
    Pfaller MA, Diekema DJ, Gibbs DL, Newell VA, Bijie H, Dzierzanowska D, Klimko NN, Letscher-Bru V, Lisalova M, Muehlethaler K, Rennison C, Zaidi M; Global Antifungal Surveillance Group (2009) Results from the ARTEMIS DISK Global Antifungal Surveillance Study, 1997 to 2007: 10.5-year analysis of susceptibilities of noncandidal yeast species to fluconazole and voriconazole determined by CLSI standardized disk diffusion testing. J Clin Microbiol 47(1):117–123PubMedGoogle Scholar
  94. 94.
    Rex JH, Rinaldi MG, Pfaller MA (1995) Resistance of Candida species to fluconazole. Antimicrob Agents Chemother 39(1):1–8PubMedGoogle Scholar
  95. 95.
    Morschhäuser J (2010) Regulation of multidrug resistance in pathogenic fungi. Fungal Genet Biol 47(2):94–106PubMedGoogle Scholar
  96. 96.
    Martinez LR, Fries BC (2010) Fungal biofilms: relevance in the setting of human disease. Curr Fungal Infect Rep 4(4):266–275PubMedGoogle Scholar
  97. 97.
    Bach A (1996) Central venous catheter infections. Intensive Care Med 22(6):613PubMedGoogle Scholar
  98. 98.
    Martinez LR, Casadevall A (2006) Cryptococcus neoformans cells in biofilms are less susceptible than planktonic cells to antimicrobial molecules produced by the innate immune system. Infect Immun 74(11):6118–6123PubMedGoogle Scholar
  99. 99.
    Ramage G, Bachmann S, Patterson TF, Wickes BL, López-Ribot JL (2002) Investigation of multidrug efflux pumps in relation to fluconazole resistance in Candida albicans biofilms. J Antimicrob Chemother 49(6):973–980PubMedGoogle Scholar
  100. 100.
    Mukherjee PK, Zhou G, Munyon R, Ghannoum MA (2005) Candida biofilm: a well-designed protected environment. Med Mycol 43(3):191–208PubMedGoogle Scholar
  101. 101.
    Martinez LR, Casadevall A (2005) Specific antibody can prevent fungal biofilm formation and this effect correlates with protective efficacy. Infect Immun 73(10):6350–6362PubMedGoogle Scholar
  102. 102.
    Mah TF, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39PubMedGoogle Scholar
  103. 103.
    de Aguiar Cordeiro R, Mourão CI, Rocha MF, de Farias Marques FJ, Teixeira CE, de Oliveira Miranda DF, Neto LV, Brilhante RS, de Jesus Pinheiro Gomes Bandeira T, Sidrim JJ (2013) Antifolates inhibit Cryptococcus biofilms and enhance susceptibility of planktonic cells to amphotericin B. Eur J Clin Microbiol Infect Dis 32(4):557–564PubMedGoogle Scholar
  104. 104.
    Robertson EJ, Wolf JM, Casadevall A (2012) EDTA inhibits biofilm formation, extracellular vesicular secretion, and shedding of the capsular polysaccharide glucuronoxylomannan by Cryptococcus neoformans. Appl Environ Microbiol 78(22):7977–7984PubMedGoogle Scholar
  105. 105.
    Martinez LR, Mihu MR, Han G, Frases S, Cordero RJ, Casadevall A, Friedman AJ, Friedman JM, Nosanchuk JD (2010) The use of chitosan to damage Cryptococcus neoformans biofilms. Biomaterials 31(4):669–679PubMedGoogle Scholar
  106. 106.
    Pettit RK, Repp KK, Hazen KC (2010) Temperature affects the susceptibility of Cryptococcus neoformans biofilms to antifungal agents. Med Mycol 48(2):421–426PubMedGoogle Scholar
  107. 107.
    Quindós G, Del Palacio A, Pontón J (2007) Present and future of voriconazole in the treatment of invasive mycoses: the inseparable binomial diagnosis-treatment. Rev Iberoam Micol 24(3):179–180PubMedGoogle Scholar
  108. 108.
    Quindós G, Villar-Vidal M, Eraso E (2009) Activity of micafungin against Candida biofilms. Rev Iberoam Micol 26(1):49–55PubMedGoogle Scholar
  109. 109.
    Nascimento GGF, Locatelli J, Freitas PC, Silva GL (2000) Atividade de extratos vegetais e fitofármacos sobre bactérias resistentes a antibióticos. Braz J Microbiol 31(4):247–256Google Scholar
  110. 110.
    Basso LA, da Silva LH, Fett-Neto AG, de Azevedo WF Jr, Moreira IdeS, Palma MS, Calixto JB, Astolfi Filho S, dos Santos RR, Soares MB, Santos DS (2005) The use of biodiversity as source of new chemical entities against defined molecular targets for treatment of malaria, tuberculosis, and T-cell mediated diseases—a review. Mem Inst Oswaldo Cruz 100(6):475–506PubMedGoogle Scholar
  111. 111.
    Rojas JJ, Ochoa VJ, Ocampo SA, Muñoz JF (2006) Screening for antimicrobial activity of ten medicinal plants used in Colombian folkloric medicine: a possible alternative in the treatment of non-nosocomial infections. BMC Complement Altern Med 6:2PubMedGoogle Scholar
  112. 112.
    Cruz MC, Santos PO, Barbosa AM Jr, de Mélo DL, Alviano CS, Antoniolli AR, Alviano DS, Trindade RC (2007) Antifungal activity of Brazilian medicinal plants involved in popular treatment of mycoses. J Ethnopharmacol 111(2):409–412PubMedGoogle Scholar
  113. 113.
    Zhu F, Ma XH, Qin C, Tao L, Liu X, Shi Z, Zhang CL, Tan CY, Chen YZ, Jiang YY (2012) Drug discovery prospect from untapped species: indications from approved natural product drugs. PLoS One 7(7):e39782PubMedGoogle Scholar
  114. 114.
    Gullo FP, Sardi JC, Santos VA, Sangalli-Leite F, Pitangui NS, Rossi SA, de Paula E Silva AC, Soares LA, Silva JF, Oliveira HC, Furlan M, Silva DH, Bolzani VS, Mendes-Giannini MJ, Fusco-Almeida AM (2012) Antifungal activity of maytenin and pristimerin. Evid Based Complement Alternat Med 2012:340787PubMedGoogle Scholar
  115. 115.
    de Carvalho Tavares L, Johann S, Maria de Almeida Alves T, Guerra JC, Maria de Souza-Fagundes E, Cisalpino PS, Bortoluzzi AJ, Caramori GF, de Mattos Piccoli R, Braibante HTS, Braibante MEF, Pizzolatti MG (2011) Quinolinyl and quinolinyl N-oxide chalcones: synthesis, antifungal and cytotoxic activities. Eur J Med Chem 46(9):4448–4456PubMedGoogle Scholar
  116. 116.
    Nondo RS, Mbwambo ZH, Kidukuli AW, Innocent EM, Mihale MJ, Erasto P, Moshi MJ (2011) Larvicidal, antimicrobial and brine shrimp activities of extracts from Cissampelos mucronata and Tephrosia villosa from coast region, Tanzania. BMC Complement Altern Med 11:33PubMedGoogle Scholar
  117. 117.
    Rangkadilok N, Tongchusak S, Boonhok R, Chaiyaroj SC, Junyaprasert VB, Buajeeb W, Akanimanee J, Raksasuk T, Suddhasthira T, Satayavivad J (2012) In vitro antifungal activities of longan (Dimocarpus longan Lour.) seed extract. Fitoterapia 83(3):545–553PubMedGoogle Scholar
  118. 118.
    Tocci N, Simonetti G, D’Auria FD, Panella S, Palamara AT, Valletta A, Pasqua G (2011) Root cultures of Hypericum perforatum subsp. angustifolium elicited with chitosan and production of xanthone-rich extracts with antifungal activity. Appl Microbiol Biotechnol 91(4):977–987PubMedGoogle Scholar
  119. 119.
    Clancy CJ, Nguyen MH (1998) The combination of amphotericin B and azithromycin as a potential new therapeutic approach to fusariosis. J Antimicrob Chemother 41(1):127–130PubMedGoogle Scholar
  120. 120.
    Patterson TF, Kirkpatrick WR, White M, Hiemenz JW, Wingard JR, Dupont B, Rinaldi MG, Stevens DA, Graybill JR (2000) Invasive aspergillosis. Disease spectrum, treatment practices, and outcomes. I3 Aspergillus Study Group. Medicine (Baltimore) 79(4):250–260Google Scholar
  121. 121.
    Odds FC (2003) Synergy, antagonism, and what the chequerboard puts between them. J Antimicrob Chemother 52(1):1PubMedGoogle Scholar
  122. 122.
    Johnson MD, MacDougall C, Ostrosky-Zeichner L, Perfect JR, Rex JH (2004) Combination antifungal therapy. Antimicrob Agents Chemother 48(3):693–715PubMedGoogle Scholar
  123. 123.
    Serena C, Fernández-Torres B, Pastor FJ, Trilles L, Lazéra MdosS, Nolard N, Guarro J (2005) In vitro interactions of micafungin with other antifungal drugs against clinical isolates of four species of Cryptococcus. Antimicrob Agents Chemother 49(7):2994–2996PubMedGoogle Scholar
  124. 124.
    Han Y, Lee JH (2005) Berberine synergy with amphotericin B against disseminated candidiasis in mice. Biol Pharm Bull 28(3):541–544PubMedGoogle Scholar
  125. 125.
    Han Y (2007) Synergic effect of grape seed extract with amphotericin B against disseminated candidiasis due to Candida albicans. Phytomedicine 14(11):733–738PubMedGoogle Scholar
  126. 126.
    Saag MS, Graybill RJ, Larsen RA, Pappas PG, Perfect JR, Powderly WG, Sobel JD, Dismukes WE (2000) Practice guidelines for the management of cryptococcal disease. Infectious Diseases Society of America. Clin Infect Dis 30(4):710–718PubMedGoogle Scholar
  127. 127.
    Schwarz P, Dromer F, Lortholary O, Dannaoui E (2003) In vitro interaction of flucytosine with conventional and new antifungals against Cryptococcus neoformans clinical isolates. Antimicrob Agents Chemother 47(10):3361–3364PubMedGoogle Scholar
  128. 128.
    Leite FS (2010) Perfil fenotípico e de expressão de proteínas de Cryptococcus neoformans após tratamento com substâncias obtidas da planta Pterogyne nitens. Análises Clínicas, Faculdade de Ciências Farmacêuticas, UNESP, AraraquaraGoogle Scholar
  129. 129.
    Suzano FR (2012) Estudo da atividade antifúngica de extratos e frações purificadas das plantas Serjania erecta radlk e Eclipta alba em linhagens de Cryptococcus neoformans. Biotecnologia, Universidade de Ribeirão Preto, Ribeirão PretoGoogle Scholar
  130. 130.
    Ahmad A, Khan A, Manzoor N (2012) Reversal of efflux mediated antifungal resistance underlies synergistic activity of two monoterpenes with fluconazole. Eur J Pharm Sci 48(1–2):80–86PubMedGoogle Scholar
  131. 131.
    Cabras T, Longhi R, Secundo F, Nocca G, Conti S, Polonelli L, Fanali C, Inzitari R, Petruzzelli R, Messana I, Castagnola M, Vitali A (2008) Structural and functional characterization of the porcine proline-rich antifungal peptide SP-B isolated from salivary gland granules. J Pept Sci 14(3):251–260PubMedGoogle Scholar
  132. 132.
    Gallis HA, Drew RH, Pickard WW (1990) Amphotericin B: 30 years of clinical experience. Rev Infect Dis 12(2):308–329PubMedGoogle Scholar
  133. 133.
    Clemons KV, Stevens DA (1998) Comparison of fungizone, Amphotec, AmBisome, and Abelcet for treatment of systemic murine cryptococcosis. Antimicrob Agents Chemother 42(4):899–902PubMedGoogle Scholar
  134. 134.
    Xu SF, Wang P, Liang ZX, Sun JP, Zhao XW, Li AM, Chen LA (2011) Investigation of inflammatory responses of pulmonary microvascular endothelial cells induced by lipopolysaccharide and mechanism. Zhonghua Jie He He Hu Xi Za Zhi 34(11):816–820PubMedGoogle Scholar
  135. 135.
    Wang H, Xu K, Liu L, Tan JP, Chen Y, Li Y, Fan W, Wei Z, Sheng J, Yang YY, Li L (2010) The efficacy of self-assembled cationic antimicrobial peptide nanoparticles against Cryptococcus neoformans for the treatment of meningitis. Biomaterials 31(10):2874–2881PubMedGoogle Scholar
  136. 136.
    Yaguchi T, Takizawa K, Taguchi H, Tanaka R, Kubota T, Kubota Y, Kubota M, Fukushima K (2007) Antifungal activity of the novel adduct, GX-95, of silver with nanometer-scale particles to peptidic hydrolysates from collagen. Nihon Ishinkin Gakkai Zasshi 48(2):97–100PubMedGoogle Scholar
  137. 137.
    Fuchs BB, Tegos GP, Hamblin MR, Mylonakis E (2007) Susceptibility of Cryptococcus neoformans to photodynamic inactivation is associated with cell wall integrity. Antimicrob Agents Chemother 51(8):2929–2936PubMedGoogle Scholar
  138. 138.
    Soares BM, Alves OA, Ferreira MV, Amorim JC, Sousa GR, Silveira LdeB, Prates RA, Avila TV, Baltazar LdeM, de Souza DdaG, Santos DA, Modolo LV, Cisalpino PS, Pinotti M (2011) Cryptococcus gattii: in vitro susceptibility to photodynamic inactivation. Photochem Photobiol 87(2):357–364PubMedGoogle Scholar
  139. 139.
    Rodrigues GB, Primo FL, Tedesco AC, Braga GU (2012) In vitro photodynamic inactivation of Cryptococcus neoformans melanized cells with chloroaluminum phthalocyanine nanoemulsion. Photochem Photobiol 88(2):440–447PubMedGoogle Scholar
  140. 140.
    Antachopoulos C, Walsh TJ (2012) Immunotherapy of Cryptococcus infections. Clin Microbiol Infect 18(2):126–133PubMedGoogle Scholar
  141. 141.
    Hardison SE, Herrera G, Young ML, Hole CR, Wozniak KL, Wormley FL Jr (2012) Protective immunity against pulmonary cryptococcosis is associated with STAT1-mediated classical macrophage activation. J Immunol 189(8):4060–4068PubMedGoogle Scholar
  142. 142.
    Kawakami K, Tohyama M, Xie Q, Saito A (1996) IL-12 protects mice against pulmonary and disseminated infection caused by Cryptococcus neoformans. Clin Exp Immunol 104(2):208–214PubMedGoogle Scholar
  143. 143.
    Clemons KV, Lutz JE, Stevens DA (2001) Efficacy of recombinant gamma interferon for treatment of systemic cryptococcosis in SCID mice. Antimicrob Agents Chemother 45(3):686–689PubMedGoogle Scholar
  144. 144.
    Decken K, Köhler G, Palmer-Lehmann K, Wunderlin A, Mattner F, Magram J, Gately MK, Alber G (1998) Interleukin-12 is essential for a protective Th1 response in mice infected with Cryptococcus neoformans. Infect Immun 66(10):4994–5000PubMedGoogle Scholar
  145. 145.
    Clemons KV, Brummer E, Stevens DA (1994) Cytokine treatment of central nervous system infection: efficacy of interleukin-12 alone and synergy with conventional antifungal therapy in experimental cryptococcosis. Antimicrob Agents Chemother 38(3):460–464PubMedGoogle Scholar
  146. 146.
    Jarvis JN, Meintjes G, Rebe K, Williams GN, Bicanic T, Williams A, Schutz C, Bekker LG, Wood R, Harrison TS (2012) Adjunctive interferon-γ immunotherapy for the treatment of HIV-associated cryptococcal meningitis: a randomized controlled trial. AIDS 26(9):1105–1113PubMedGoogle Scholar
  147. 147.
    Qureshi MH, Zhang T, Koguchi Y, Nakashima K, Okamura H, Kurimoto M, Kawakami K (1999) Combined effects of IL-12 and IL-18 on the clinical course and local cytokine production in murine pulmonary infection with Cryptococcus neoformans. Eur J Immunol 29(2):643–649PubMedGoogle Scholar
  148. 148.
    Zhang T, Kawakami K, Qureshi MH, Okamura H, Kurimoto M, Saito A (1997) Interleukin-12 (IL-12) and IL-18 synergistically induce the fungicidal activity of murine peritoneal exudate cells against Cryptococcus neoformans through production of gamma interferon by natural killer cells. Infect Immun 65(9):3594–3599PubMedGoogle Scholar
  149. 149.
    Khan AA, Jabeen M, Chauhan A, Owais M (2012) Vaccine potential of cytosolic proteins loaded fibrin microspheres of Cryptococcus neoformans in BALB/c mice. J Drug Target 20(5):453–466PubMedGoogle Scholar
  150. 150.
    Casadevall A (2006) The third age of antimicrobial therapy. Clin Infect Dis 42(10):1414–1416PubMedGoogle Scholar
  151. 151.
    Pachl J, Svoboda P, Jacobs F, Vandewoude K, van der Hoven B, Spronk P, Masterson G, Malbrain M, Aoun M, Garbino J, Takala J, Drgona L, Burnie J, Matthews R; Mycograb Invasive Candidiasis Study Group (2006) A randomized, blinded, multicenter trial of lipid-associated amphotericin B alone versus in combination with an antibody-based inhibitor of heat shock protein 90 in patients with invasive candidiasis. Clin Infect Dis 42(10):1404–1413PubMedGoogle Scholar
  152. 152.
    Taborda CP, Casadevall A (2001) Immunoglobulin M efficacy against Cryptococcus neoformans: mechanism, dose dependence, and prozone-like effects in passive protection experiments. J Immunol 166(3):2100–2107PubMedGoogle Scholar
  153. 153.
    Mukherjee J, Kozel TR, Casadevall A (1998) Monoclonal antibodies reveal additional epitopes of serotype D Cryptococcus neoformans capsular glucuronoxylomannan that elicit protective antibodies. J Immunol 161(7):3557–3568PubMedGoogle Scholar
  154. 154.
    Rosas AL, Nosanchuk JD, Casadevall A (2001) Passive immunization with melanin-binding monoclonal antibodies prolongs survival of mice with lethal Cryptococcus neoformans infection. Infect Immun 69(5):3410–3412PubMedGoogle Scholar
  155. 155.
    Mukherjee J, Scharff MD, Casadevall A (1992) Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect Immun 60(11):4534–4541PubMedGoogle Scholar
  156. 156.
    Mukherjee J, Zuckier LS, Scharff MD, Casadevall A (1994) Therapeutic efficacy of monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan alone and in combination with amphotericin B. Antimicrob Agents Chemother 38(3):580–587PubMedGoogle Scholar
  157. 157.
    Mukherjee J, Feldmesser M, Scharff MD, Casadevall A (1995) Monoclonal antibodies to Cryptococcus neoformans glucuronoxylomannan enhance fluconazole efficacy. Antimicrob Agents Chemother 39(7):1398–1405PubMedGoogle Scholar
  158. 158.
    Larsen RA, Pappas PG, Perfect J, Aberg JA, Casadevall A, Cloud GA, James R, Filler S, Dismukes WE (2005) Phase I evaluation of the safety and pharmacokinetics of murine-derived anticryptococcal antibody 18B7 in subjects with treated cryptococcal meningitis. Antimicrob Agents Chemother 49(3):952–958PubMedGoogle Scholar
  159. 159.
    Jiang Z, Bryan RA, Morgenstern A, Bruchertseifer F, Casadevall A, Dadachova E (2012) Treatment of early and established Cryptococcus neoformans infection with radiolabeled antibodies in immunocompetent mice. Antimicrob Agents Chemother 56(1):552–554PubMedGoogle Scholar
  160. 160.
    Marongiu B, Piras A, Porcedda S, Falconieri D, Maxia A, Frau MA, Gonçalves MJ, Cavaleiro C, Salgueiro L (2012) Isolation of the volatile fraction from Apium graveolens L. (Apiaceae) by supercritical carbon dioxide extraction and hydrodistillation: chemical composition and antifungal activity. Nat Prod Res [Epub ahead of print]Google Scholar
  161. 161.
    Fukuyama N, Shibuya M, Orihara Y (2012) Antimicrobial polyacetylenes from Panax ginseng hairy root culture. Chem Pharm Bull (Tokyo) 60(3):377–380Google Scholar
  162. 162.
    Lago JH, Souza ED, Mariane B, Pascon R, Vallim MA, Martins RC, Baroli AA, Carvalho BA, Soares MG, dos Santos RT, Sartorelli P (2011) Chemical and biological evaluation of essential oils from two species of Myrtaceae—Eugenia uniflora L. and Plinia trunciflora (O. Berg) Kausel. Molecules 16(12):9827–9837PubMedGoogle Scholar
  163. 163.
    Patel KD, Scarano FJ, Kondo M, Hurta RA, Neto CC (2011) Proanthocyanidin-rich extracts from cranberry fruit (Vaccinium macrocarpon Ait.) selectively inhibit the growth of human pathogenic fungi Candida spp. and Cryptococcus neoformans. J Agric Food Chem 59(24):12864–12873PubMedGoogle Scholar
  164. 164.
    Fukuyama N, Ino C, Suzuki Y, Kobayashi N, Hamamoto H, Sekimizu K, Orihara Y (2011) Antimicrobial sesquiterpenoids from Laurus nobilis L. Nat Prod Res 25(14):1295–1303PubMedGoogle Scholar
  165. 165.
    Funari CS, Gullo FP, Napolitano A, Carneiro RL, Mendes-Giannini MJ, Fusco-Almeida AM, Piacente S, Pizza C, Silva DH (2012) Chemical and antifungal investigations of six Lippia species (Verbenaceae) from Brazil. Food Chem 135(3):2086–2094PubMedGoogle Scholar
  166. 166.
    Regasini LO, Pivatto M, Scorzoni L, Benaducci T, Fusco-Almeida AM, Mendes-Giannini MJS, Barreiro EJ, Silva DHS, da Silva Bolzani V (2010) Antimicrobial activity of Pterogyne nitens Tul., Fabaceae, against opportunistic fungi. Rev Bras Farmacogn 20(5):706–711Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • F. P. Gullo
    • 1
  • S. A. Rossi
    • 1
  • J. de C. O. Sardi
    • 1
  • V. L. I. Teodoro
    • 1
  • M. J. S. Mendes-Giannini
    • 1
  • A. M. Fusco-Almeida
    • 1
  1. 1.Faculty of Pharmaceutical Sciences of Araraquara, Department of Clinical Analysis, Laboratory of Clinical MycologyUniversidade Estadual Paulista (UNESP)AraraquaraBrazil

Personalised recommendations