Advertisement

Pseudomonas aeruginosa infection in cystic fibrosis lung disease and new perspectives of treatment: a review

  • M. C. GasparEmail author
  • W. Couet
  • J.-C. Olivier
  • A. A. C. C. Pais
  • J. J. S. Sousa
Review

Abstract

Cystic fibrosis (CF) is a complex inherited disease which affects many organs, including the pancreas and liver, gastrointestinal tract and reproductive system, sweat glands and, particularly, the respiratory system. Pseudomonas aeruginosa is the main cause of chronic airway infection. In order to reduce morbidity and mortality due to lung infection by P. aeruginosa, aerosol antibiotics have been used to achieve high local concentrations in the airways and to reduce systemic toxicity. In the course of this review, the current treatments to control CF lung infections by P. aeruginosa are presented. Some innovative aerosol formulations such as liposomes and microspheres are herein reviewed, which may improve the efficiency of anti-pseudomonal agents, and ensure patients’ compliance to treatments, by reducing dosing frequency and/or drug dose, while maintaining therapeutic efficacy, preventing the occurrence of bacterial resistance and/or reducing adverse effects due to their controlled-release properties.

Keywords

Cystic Fibrosis Cystic Fibrosis Transmembrane Conductance Regulator Tobramycin Cystic Fibrosis Patient Colistin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by Fundação para a Ciência e a Tecnologia (FCT), Portugal, via the grant SFRH/BD/80307/2011.

Conflict of interest

The authors report no conflicts of interest.

References

  1. 1.
    Høiby N (2011) Recent advances in the treatment of Pseudomonas aeruginosa infections in cystic fibrosis. BMC Med 9(1):32–38. doi: 10.1186/1741-7015-9-32 PubMedCrossRefGoogle Scholar
  2. 2.
    Boucher RC (2004) New concepts of the pathogenesis of cystic fibrosis lung disease. Eur Respir J 23(1):146–158. doi: 10.1183/09031936.03.00057003 PubMedCrossRefGoogle Scholar
  3. 3.
    Döring G, Conway SP, Heijerman HG, Hodson ME, Høiby N, Smyth A, Touw DJ (2000) Antibiotic therapy against Pseudomonas aeruginosa in cystic fibrosis: a European consensus. Eur Respir J 16(4):749–767PubMedCrossRefGoogle Scholar
  4. 4.
    Ibrahim BM, Tsifansky MD, Yang Y, Yeo Y (2011) Challenges and advances in the development of inhalable drug formulations for cystic fibrosis lung disease. Expert Opin Drug Deliv 8(4):451–466. doi: 10.1517/17425247.2011.561310 PubMedCrossRefGoogle Scholar
  5. 5.
    Ramsey BW (1996) Management of pulmonary disease in patients with cystic fibrosis. N Engl J Med 335(3):179–188. doi: 10.1056/NEJM199607183350307 PubMedCrossRefGoogle Scholar
  6. 6.
    Girón Moreno RM, Salcedo Posadas A, Mar Gómez-Punter R (2011) Inhaled antibiotic therapy in cystic fibrosis (Antibioterapia inhalada en la fibrosis quistica). Arch Bronconeumol 47(Suppl 6):14–18PubMedCrossRefGoogle Scholar
  7. 7.
    Rogers GB, Hoffman LR, Döring G (2011) Novel concepts in evaluating antimicrobial therapy for bacterial lung infections in patients with cystic fibrosis. J Cyst Fibros 10(6):387–400. doi: 10.1016/j.jcf.2011.06.014 PubMedCrossRefGoogle Scholar
  8. 8.
    George AM, Jones PM, Middleton PG (2009) Cystic fibrosis infections: treatment strategies and prospects. FEMS Microbiol Lett 300(2):153–164. doi: 10.1111/j.1574-6968.2009.01704.x PubMedCrossRefGoogle Scholar
  9. 9.
    Boucher RC (2007) Airway surface dehydration in cystic fibrosis: pathogenesis and therapy. Annu Rev Med 58(1):157–170. doi: 10.1146/annurev.med.58.071905.105316 PubMedCrossRefGoogle Scholar
  10. 10.
    Davies JC, Bilton D (2009) Bugs, biofilms, and resistance in cystic fibrosis. Respir Care 54(5):628–640PubMedCrossRefGoogle Scholar
  11. 11.
    Mall MA (2008) Role of cilia, mucus, and airway surface liquid in mucociliary dysfunction: lessons from mouse models. J Aerosol Med Pulm Drug Deliv 21(1):13–24. doi: 10.1089/jamp.2007.0659 PubMedCrossRefGoogle Scholar
  12. 12.
    Deneuville E, Perrot-Minot C, Pennaforte F, Roussey M, Zahm JM, Clavel C, Puchelle E, de Bentzmann S (1997) Revisited physicochemical and transport properties of respiratory mucus in genotyped cystic fibrosis patients. Am J Respir Crit Care Med 156(1):166–172PubMedCrossRefGoogle Scholar
  13. 13.
    King M (1987) The role of mucus viscoelasticity in cough clearance. Biorheology 24(6):589–597PubMedGoogle Scholar
  14. 14.
    Dudley MN, Loutit J, Griffith DC (2008) Aerosol antibiotics: considerations in pharmacological and clinical evaluation. Curr Opin Biotechnol 19(6):637–643. doi: 10.1016/j.copbio.2008.11.002 PubMedCrossRefGoogle Scholar
  15. 15.
    Coakley RD, Grubb BR, Paradiso AM, Gatzy JT, Johnson LG, Kreda SM, O’Neal WK, Boucher RC (2003) Abnormal surface liquid pH regulation by cultured cystic fibrosis bronchial epithelium. Proc Natl Acad Sci U S A 100(26):16083–16088. doi: 10.1073/pnas.2634339100 PubMedCrossRefGoogle Scholar
  16. 16.
    Geller DE (2009) Aerosol antibiotics in cystic fibrosis. Respir Care 54(5):658–670PubMedCrossRefGoogle Scholar
  17. 17.
    Bals R, Hubert D, Tümmler B (2011) Antibiotic treatment of CF lung disease: from bench to bedside. J Cyst Fibros 10(Suppl 2):S146–S151. doi: 10.1016/s1569-1993(11)60019-2 PubMedCrossRefGoogle Scholar
  18. 18.
    Goss CH, Muhlebach MS (2011) Review: Staphylococcus aureus and MRSA in cystic fibrosis. J Cyst Fibros 10(5):298–306. doi: 10.1016/j.jcf.2011.06.002 PubMedCrossRefGoogle Scholar
  19. 19.
    van Westreenen M, Tiddens HAWM (2010) New antimicrobial strategies in cystic fibrosis. Paediatr Drugs 12(6):343–352PubMedCrossRefGoogle Scholar
  20. 20.
    Harrison F (2007) Microbial ecology of the cystic fibrosis lung. Microbiology 153(4):917–923. doi: 10.1099/mic.0.2006/004077-0 PubMedCrossRefGoogle Scholar
  21. 21.
    de Vrankrijker AMM, Wolfs TFW, van der Ent CK (2010) Challenging and emerging pathogens in cystic fibrosis. Paediatr Respir Rev 11(4):246–254. doi: 10.1016/j.prrv.2010.07.003 PubMedCrossRefGoogle Scholar
  22. 22.
    Grinwis ME, Sibley CD, Parkins MD, Eshaghurshan CS, Rabin HR, Surette MG (2010) Macrolide and clindamycin resistance in Streptococcus milleri group isolates from the airways of cystic fibrosis patients. Antimicrob Agents Chemother 54(7):2823–2829. doi: 10.1128/aac.01845-09 PubMedCrossRefGoogle Scholar
  23. 23.
    Döring G, Flume P, Heijerman H, Elborn JS; Consensus Study Group (2012) Treatment of lung infection in patients with cystic fibrosis: current and future strategies. J Cyst Fibros 11(6):461–479. doi: 10.1016/j.jcf.2012.10.004 PubMedCrossRefGoogle Scholar
  24. 24.
    Delhaes L, Monchy S, Fréalle E, Hubans C, Salleron J, Leroy S, Prevotat A, Wallet F, Wallaert B, Dei-Cas E, Sime-Ngando T, Chabé M, Viscogliosi E (2012) The airway microbiota in cystic fibrosis: a complex fungal and bacterial community—implications for therapeutic management. PLoS One 7(4):e36313. doi: 10.1371/journal.pone.0036313 PubMedCrossRefGoogle Scholar
  25. 25.
    VanDevanter DR, LiPuma JJ (2012) Microbial diversity in the cystic fibrosis airways: where is thy sting? Future Microbiol 7(7):801–803. doi: 10.2217/fmb.12.55 PubMedCrossRefGoogle Scholar
  26. 26.
    Zemanick ET, Sagel SD, Harris JK (2011) The airway microbiome in cystic fibrosis and implications for treatment. Curr Opin Pediatr 23(3):319–324. doi: 10.1097/MOP.0b013e32834604f2 PubMedCrossRefGoogle Scholar
  27. 27.
    Lynch SV, Bruce KD (2013) The cystic fibrosis airway microbiome. Cold Spring Harb Perspect Med. 3(3). pii: a009738. doi: 10.1101/cshperspect.a009738
  28. 28.
    Banerjee D, Stableforth D (2000) The treatment of respiratory Pseudomonas infection in cystic fibrosis: what drug and which way? Drugs 60(5):1053–1064PubMedCrossRefGoogle Scholar
  29. 29.
    Rosenfeld M, Ramsey BW, Gibson RL (2003) Pseudomonas acquisition in young patients with cystic fibrosis: pathophysiology, diagnosis, and management. Curr Opin Pulm Med 9(6):492–497PubMedCrossRefGoogle Scholar
  30. 30.
    Cramer N, Wiehlmann L, Ciofu O, Tamm S, Høiby N, Tümmler B (2012) Molecular epidemiology of chronic Pseudomonas aeruginosa airway infections in cystic fibrosis. PLoS One 7(11):e50731. doi: 10.1371/journal.pone.0050731 PubMedCrossRefGoogle Scholar
  31. 31.
    Campana S, Taccetti G, Ravenni N, Masi I, Audino S, Sisi B, Repetto T, Döring G, de Martino M (2004) Molecular epidemiology of Pseudomonas aeruginosa, Burkholderia cepacia complex and methicillin-resistant Staphylococcus aureus in a cystic fibrosis center. J Cyst Fibros 3(3):159–163. doi: 10.1016/j.jcf.2004.03.010 PubMedCrossRefGoogle Scholar
  32. 32.
    Lee TWR, Brownlee KG, Conway SP, Denton M, Littlewood JM (2003) Evaluation of a new definition for chronic Pseudomonas aeruginosa infection in cystic fibrosis patients. J Cystic Fibros 2(1):29–34. doi: 10.1016/s1569-1993(02)00141-8 CrossRefGoogle Scholar
  33. 33.
    Billard-Pomares T, Herwegh S, Wizla-Derambure N, Turck D, Courcol R, Husson M-O (2011) Application of quantitative PCR to the diagnosis and monitoring of Pseudomonas aeruginosa colonization in 5–18-year-old cystic fibrosis patients. J Med Microbiol 60(2):157–161. doi: 10.1099/jmm.0.023838-0 PubMedCrossRefGoogle Scholar
  34. 34.
    Deschaght P, Van Daele S, De Baets F, Vaneechoutte M (2011) PCR and the detection of Pseudomonas aeruginosa in respiratory samples of CF patients. A literature review. J Cyst Fibros 10(5):293–297. doi: 10.1016/j.jcf.2011.05.004 PubMedCrossRefGoogle Scholar
  35. 35.
    Bumann D, Behre C, Behre K, Herz S, Gewecke B, Gessner JE, von Specht BU, Baumann U (2010) Systemic, nasal and oral live vaccines against Pseudomonas aeruginosa: a clinical trial of immunogenicity in lower airways of human volunteers. Vaccine 28(3):707–713. doi: 10.1016/j.vaccine.2009.10.080 PubMedCrossRefGoogle Scholar
  36. 36.
    Döring G, Meisner C, Stern M; Flagella Vaccine Trial Study Group (2007) A double-blind randomized placebo-controlled phase III study of a Pseudomonas aeruginosa flagella vaccine in cystic fibrosis patients. Proc Natl Acad Sci USA 104(26):11020–11025. doi: 10.1073/pnas.0702403104 PubMedCrossRefGoogle Scholar
  37. 37.
    Høiby N, Bjarnsholt T, Givskov M, Molin S, Ciofu O (2010) Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents 35(4):322–332. doi: 10.1016/j.ijantimicag.2009.12.011 PubMedCrossRefGoogle Scholar
  38. 38.
    Nicas TI, Hancock REW (1983) Pseudomonas aeruginosa outer membrane permeability: isolation of a porin protein F-deficient mutant. J Bacteriol 153(1):281–285PubMedGoogle Scholar
  39. 39.
    Aronoff SC (1988) Outer membrane permeability in Pseudomonas cepacia: diminished porin content in a beta-lactam-resistant mutant and in resistant cystic fibrosis isolates. Antimicrob Agents Chemother 32(11):1636–1639PubMedCrossRefGoogle Scholar
  40. 40.
    Burns JL, Hedin LA, Lien DM (1989) Chloramphenicol resistance in Pseudomonas cepacia because of decreased permeability. Antimicrob Agents Chemother 33(2):136–141PubMedCrossRefGoogle Scholar
  41. 41.
    Nikaido H (1994) Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264(5157):382–388. doi: 10.1126/science.8153625 PubMedCrossRefGoogle Scholar
  42. 42.
    Grégoire N, Raherison S, Grignon C, Comets E, Marliat M, Ploy M-C, Couet W (2010) Semimechanistic pharmacokinetic–pharmacodynamic model with adaptation development for time–kill experiments of ciprofloxacin against Pseudomonas aeruginosa. Antimicrob Agents Chemother 54(6):2379–2384. doi: 10.1128/aac.01478-08 PubMedCrossRefGoogle Scholar
  43. 43.
    Bolon MK (2011) The newer fluoroquinolones. Med Clin N Am 95(4):793–817. doi: 10.1016/j.mcna.2011.03.006 PubMedCrossRefGoogle Scholar
  44. 44.
    Hocquet D, El Garch F, Vogne C, Plésiat P (2003) Mécanisme de la résistance adaptative de Pseudomonas aeruginosa aux aminosides. Pathol Biol 51(8–9):443–448. doi: 10.1016/s0369-8114(03)00167-6 PubMedCrossRefGoogle Scholar
  45. 45.
    Valenza G, Radike K, Schoen C, Horn S, Oesterlein A, Frosch M, Abele-Horn M, Hebestreit H (2010) Resistance to tobramycin and colistin in isolates of Pseudomonas aeruginosa from chronically colonized patients with cystic fibrosis under antimicrobial treatment. Scand J Infect Dis 42(11–12):885–889. doi: 10.3109/00365548.2010.509333 PubMedCrossRefGoogle Scholar
  46. 46.
    Tsifansky MD, Yeo Y, Evgenov OV, Bellas E, Benjamin J, Kohane DS (2008) Microparticles for inhalational delivery of antipseudomonal antibiotics. AAPS J 10(2):254–260. doi: 10.1208/s12248-008-9033-8 PubMedCrossRefGoogle Scholar
  47. 47.
    Sonnet P, Izard D, Mullié C (2012) Prevalence of efflux-mediated ciprofloxacin and levofloxacin resistance in recent clinical isolates of Pseudomonas aeruginosa and its reversal by the efflux pump inhibitors 1-(1-naphthylmethyl)-piperazine and phenylalanine-arginine-beta-naphthylamide. Int J Antimicrob Agents 39(1):77–80PubMedCrossRefGoogle Scholar
  48. 48.
    Govan JRW (2006) Multidrug-resistant pulmonary infection in cystic fibrosis—what does ‘resistant’ mean? J Med Microbiol 55(12):1615–1617. doi: 10.1099/jmm.0.46884-0 PubMedCrossRefGoogle Scholar
  49. 49.
    Flume PA, Mogayzel PJ Jr, Robinson KA, Goss CH, Rosenblatt RL, Kuhn RJ, Marshall BC; Clinical Practice Guidelines for Pulmonary Therapies Committee (2009) Cystic fibrosis pulmonary guidelines: treatment of pulmonary exacerbations. Am J Respir Crit Care Med 180(9):802–808. doi: 10.1164/rccm.200812-1845PP PubMedCrossRefGoogle Scholar
  50. 50.
    Mouton JW, Theuretzbacher U, Craig WA, Tulkens PM, Derendorf H, Cars O (2008) Tissue concentrations: do we ever learn? J Antimicrob Chemother 61(2):235–237. doi: 10.1093/jac/dkm476 PubMedCrossRefGoogle Scholar
  51. 51.
    Ryan DM, Cars O (1983) A problem in the interpretation of beta-lactam antibiotic levels in tissues. J Antimicrob Chemother 12(3):281–284. doi: 10.1093/jac/12.3.281 PubMedCrossRefGoogle Scholar
  52. 52.
    Kiem S, Schentag JJ (2008) Interpretation of antibiotic concentration ratios measured in epithelial lining fluid. Antimicrob Agents Chemother 52(1):24–36. doi: 10.1128/aac.00133-06 PubMedCrossRefGoogle Scholar
  53. 53.
    Conte JE Jr, Golden J, Duncan S, McKenna E, Lin E, Zurlinden E (1996) Single-dose intrapulmonary pharmacokinetics of azithromycin, clarithromycin, ciprofloxacin, and cefuroxime in volunteer subjects. Antimicrob Agents Chemother 40(7):1617–1622PubMedGoogle Scholar
  54. 54.
    Rose LM, Neale R (2010) Development of the first inhaled antibiotic for the treatment of cystic fibrosis. Sci Transl Med 2(63):63mr4. doi: 10.1126/scitranslmed.3001634 PubMedCrossRefGoogle Scholar
  55. 55.
    Sawicki GS, Signorovitch JE, Zhang J, Latremouille-Viau D, von Wartburg M, Wu EQ, Shi L (2012) Reduced mortality in cystic fibrosis patients treated with tobramycin inhalation solution. Pediatr Pulmonol 47(1):44–52. doi: 10.1002/ppul.21521 PubMedCrossRefGoogle Scholar
  56. 56.
    Ballmann M, Smyth A, Geller DE (2011) Therapeutic approaches to chronic cystic fibrosis respiratory infections with available, emerging aerosolized antibiotics. Respir Med 105:S2–S8PubMedCrossRefGoogle Scholar
  57. 57.
    Stockmann C, Sherwin CMT, Zobell JT, Young DC, Waters CD, Spigarelli MG, Ampofo K (2013) Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: III. fluoroquinolones. Pediatr Pulmonol 48(3):211–220. doi: 10.1002/ppul.22667 PubMedCrossRefGoogle Scholar
  58. 58.
    Zobell JT, Young DC, Waters CD, Ampofo K, Cash J, Marshall BC, Olson J, Chatfield BA (2011) A survey of the utilization of anti-pseudomonal beta-lactam therapy in cystic fibrosis patients. Pediatr Pulmonol 46(10):987–990. doi: 10.1002/ppul.21467 PubMedCrossRefGoogle Scholar
  59. 59.
    Zobell JT, Young DC, Waters CD, Stockmann C, Ampofo K, Sherwin CMT, Spigarelli MG (2012) Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: I. aztreonam and carbapenems. Pediatr Pulmonol 47(12):1147–1158. doi: 10.1002/ppul.22655 PubMedCrossRefGoogle Scholar
  60. 60.
    Zobell JT, Waters CD, Young DC, Stockmann C, Ampofo K, Sherwin CMT, Spigarelli MG (2013) Optimization of anti-pseudomonal antibiotics for cystic fibrosis pulmonary exacerbations: II. cephalosporins and penicillins. Pediatr Pulmonol 48(2):107–122. doi: 10.1002/ppul.22669 PubMedCrossRefGoogle Scholar
  61. 61.
    Couet W, Grégoire N, Marchand S, Mimoz O (2012) Colistin pharmacokinetics: the fog is lifting. Clin Microbiol Infect 18(1):30–39. doi: 10.1111/j.1469-0691.2011.03667.x PubMedCrossRefGoogle Scholar
  62. 62.
    Oliveira MS, Prado GVB, Costa SF, Grinbaum RS, Levin AS (2009) Polymyxin B and colistimethate are comparable as to efficacy and renal toxicity. Diagn Microbiol Infect Dis 65(4):431–434. doi: 10.1016/j.diagmicrobio.2009.07.018 PubMedCrossRefGoogle Scholar
  63. 63.
    Westerman EM, Le Brun PPH, Touw DJ, Frijlink HW, Heijerman HGM (2004) Effect of nebulized colistin sulphate and colistin sulphomethate on lung function in patients with cystic fibrosis: a pilot study. J Cystic Fibros 3(1):23–28CrossRefGoogle Scholar
  64. 64.
    Le Brun PPH, de Boer AH, Mannes GPM, de Fraı̂ture DMI, Brimicombe RW, Touw DJ, Vinks AA, Frijlink HW, Heijerman HGM (2002) Dry powder inhalation of antibiotics in cystic fibrosis therapy: part 2: inhalation of a novel colistin dry powder formulation: a feasibility study in healthy volunteers and patients. Eur J Pharm Biopharm 54(1):25–32. doi: 10.1016/s0939-6411(02)00044-9 PubMedCrossRefGoogle Scholar
  65. 65.
    Faruqi S, McCreanor J, Moon T, Meigh R, Morice AH (2008) Fosfomycin for Pseudomonas-related exacerbations of cystic fibrosis. Int J Antimicrob Agents 32(5):461–463. doi: 10.1016/j.ijantimicag.2008.05.010 PubMedCrossRefGoogle Scholar
  66. 66.
    Mirakhur A, Gallagher MJ, Ledson MJ, Hart CA, Walshaw MJ (2003) Fosfomycin therapy for multiresistant Pseudomonas aeruginosa in cystic fibrosis. J Cystic Fibros 2(1):19–24. doi: 10.1016/s1569-1993(02)00143-1 CrossRefGoogle Scholar
  67. 67.
    Kurlandsky LE, Fader RC (2000) In vitro activity of minocycline against respiratory pathogens from patients with cystic fibrosis. Pediatr Pulmonol 29(3):210–212. doi: 10.1002/(sici)1099-0496(200003)29:3<210::aid-ppul9>3.0.co;2–2 PubMedCrossRefGoogle Scholar
  68. 68.
    Keel RA, Schaeftlein A, Kloft C, Pope JS, Knauft RF, Muhlebach M, Nicolau DP, Kuti JL (2011) Pharmacokinetics of intravenous and oral linezolid in adults with cystic fibrosis. Antimicrob Agents Chemother 55(7):3393–3398. doi: 10.1128/aac.01797-10 PubMedCrossRefGoogle Scholar
  69. 69.
    Dotis J, Iosifidis E, Ioannidou M, Roilides E (2010) Use of linezolid in pediatrics: a critical review. Int J Infect Dis 14(8):e638–e648. doi: 10.1016/j.ijid.2009.10.002 PubMedCrossRefGoogle Scholar
  70. 70.
    Di Paolo A, Malacarne P, Guidotti E, Danesi R, Del Tacca M (2010) Pharmacological issues of linezolid: an updated critical review. Clin Pharmacokinet 49(7):439–447PubMedCrossRefGoogle Scholar
  71. 71.
    Grasemann H, Ratjen F (2010) Emerging therapies for cystic fibrosis lung disease. Expert Opin Emerg Drugs 15(4):653–659. doi: 10.1517/14728214.2010.517746 PubMedCrossRefGoogle Scholar
  72. 72.
    Anderson P (2010) Emerging therapies in cystic fibrosis. Ther Adv Respir Dis 4(3):177–185. doi: 10.1177/1753465810371107 PubMedCrossRefGoogle Scholar
  73. 73.
    Boucher RC (1999) Status of gene therapy for cystic fibrosis lung disease. J Clin Invest 103(4):441–445. doi: 10.1172/jci6330 PubMedCrossRefGoogle Scholar
  74. 74.
    Sagel SD, Sontag MK, Accurso FJ (2009) Relationship between antimicrobial proteins and airway inflammation and infection in cystic fibrosis. Pediatr Pulmonol 44(4):402–409. doi: 10.1002/ppul.21028 PubMedCrossRefGoogle Scholar
  75. 75.
    Travis SM, Singh PK, Welsh MJ (2001) Antimicrobial peptides and proteins in the innate defense of the airway surface. Curr Opin Immunol 13(1):89–95. doi: 10.1016/s0952-7915(00)00187-4 PubMedCrossRefGoogle Scholar
  76. 76.
    Albrecht MT, Wang W, Shamova O, Lehrer RI, Schiller NL (2002) Binding of protegrin-1 to Pseudomonas aeruginosa and Burkholderia cepacia. Respir Res 3(1):18PubMedCrossRefGoogle Scholar
  77. 77.
    Döring G, Pier GB (2008) Vaccines and immunotherapy against Pseudomonas aeruginosa. Vaccine 26(8):1011–1024. doi: 10.1016/j.vaccine.2007.12.007 PubMedCrossRefGoogle Scholar
  78. 78.
    Lillquist YP, Cho E, Davidson AGF (2011) Economic effects of an eradication protocol for first appearance of Pseudomonas aeruginosa in cystic fibrosis patients: 1995 vs. 2009. J Cyst Fibros 10(3):175–180. doi: 10.1016/j.jcf.2011.01.002 PubMedCrossRefGoogle Scholar
  79. 79.
    Ratjen F, Munck A, Kho P, Angyalosi G; ELITE Study Group (2010) Treatment of early Pseudomonas aeruginosa infection in patients with cystic fibrosis: the ELITE trial. Thorax 65(4):286–291. doi: 10.1136/thx.2009.121657 PubMedCrossRefGoogle Scholar
  80. 80.
    Giugno H, Castaños C, Lubatti A, Pinheiro JL, Hernández C, González Pena H (2010) Early antibiotic treatment for eradication of initial infection by Pseudomonas aeruginosa in patients with cystic fibrosis. Arch Argent Pediatr 108(2):141–147PubMedGoogle Scholar
  81. 81.
    Treggiari MM, Rosenfeld M, Mayer-Hamblett N, Retsch-Bogart G, Gibson RL, Williams J, Emerson J, Kronmal RA, Ramsey BW; EPIC Study Group (2009) Early anti-pseudomonal acquisition in young patients with cystic fibrosis: rationale and design of the EPIC clinical trial and observational study. Contemp Clin Trials 30(3):256–268. doi: 10.1016/j.cct.2009.01.003 PubMedCrossRefGoogle Scholar
  82. 82.
    Mayer-Hamblett N, Burns JL, Khan U, Retsch-Bogart G, Treggiari M, Ramsey BW (2010) Predictors of Pseudomonas aeruginosa recurrence in cystic fibrosis: results from the epic trial. Pediatr Pulmonol 45:326–327Google Scholar
  83. 83.
    Burkett A, Vandemheen KL, Giesbrecht-Lewis T, Ramotar K, Ferris W, Chan F, Doucette S, Fergusson D, Aaron SD (2012) Persistency of Pseudomonas aeruginosa in sputum cultures and clinical outcomes in adult patients with cystic fibrosis. Eur J Clin Microbiol Infect Dis 31:1603–1610. doi: 10.1007/s10096-011-1483-8 PubMedCrossRefGoogle Scholar
  84. 84.
    Flume PA, O’Sullivan BP, Robinson KA, Goss CH, Mogayzel PJ Jr, Willey-Courand DB, Bujan J, Finder J, Lester M, Quittell L, Rosenblatt R, Vender RL, Hazle L, Sabadosa K, Marshall B; Cystic Fibrosis Foundation, Pulmonary Therapies Committee (2007) Cystic fibrosis pulmonary guidelines: chronic medications for maintenance of lung health. Am J Respir Crit Care Med 176(10):957–969. doi: 10.1164/rccm.200705-664OC PubMedCrossRefGoogle Scholar
  85. 85.
    Aulton ME (2005) Delineamento de formas farmacêuticas, 2nd edn. Artmed, Porto AlegreGoogle Scholar
  86. 86.
    Forbes B, Asgharian B, Dailey LA, Ferguson D, Gerde P, Gumbleton M, Gustavsson L, Hardy C, Hassall D, Jones R, Lock R, Maas J, McGovern T, Pitcairn GR, Somers G, Wolff RK (2010) Challenges in inhaled product development and opportunities for open innovation. Adv Drug Deliv Rev 63(1–2):69–87. doi: 10.1016/j.addr.2010.11.004 PubMedGoogle Scholar
  87. 87.
    Sakagami M, Byron PR (2005) Respirable microspheres for inhalation: the potential of manipulating pulmonary disposition for improved therapeutic efficacy. Clin Pharmacokinet 44(3):263–277PubMedCrossRefGoogle Scholar
  88. 88.
    Patton JS (1996) Mechanisms of macromolecule absorption by the lungs. Adv Drug Deliv Rev 19(1):3–36. doi: 10.1016/0169-409x(95)00113-l CrossRefGoogle Scholar
  89. 89.
    Zeng XM, Martin GP, Marriott C (1995) The controlled delivery of drugs to the lung. Int J Pharm 124(2):149–164. doi: 10.1016/0378-5173(95)00104-q CrossRefGoogle Scholar
  90. 90.
    Marchand S, Gobin P, Brillault J, Baptista S, Adier C, Olivier J-C, Mimoz O, Couet W (2010) Aerosol therapy with colistin methanesulfonate: a biopharmaceutical issue illustrated in rats. Antimicrob Agents Chemother 54(9):3702–3707. doi: 10.1128/aac.00411-10 PubMedCrossRefGoogle Scholar
  91. 91.
    Pilcer G, Amighi K (2010) Formulation strategy and use of excipients in pulmonary drug delivery. Int J Pharm 392(1–2):1–19. doi: 10.1016/j.ijpharm.2010.03.017 PubMedCrossRefGoogle Scholar
  92. 92.
    Bjarnsholt T, Jensen PØ, Fiandaca MJ, Pedersen J, Hansen CR, Andersen CB, Pressler T, Givskov M, Høiby N (2009) Pseudomonas aeruginosa biofilms in the respiratory tract of cystic fibrosis patients. Pediatr Pulmonol 44(6):547–558. doi: 10.1002/ppul.21011 PubMedCrossRefGoogle Scholar
  93. 93.
    Vendrell Relat M, Muñoz Castro G, Sabater Talaverano G, De Gracia Roldán J (2011) The future of inhaled antibiotic therapy. New products (El futuro de la antibioterapia inhalada. Nuevos productos). Arch Bronconeumol 47(Suppl 6):30–32PubMedCrossRefGoogle Scholar
  94. 94.
    Carvalho TC, Peters JI, Williams RO 3rd (2011) Influence of particle size on regional lung deposition—what evidence is there? Int J Pharm 406(1–2):1–10. doi: 10.1016/j.ijpharm.2010.12.040 PubMedCrossRefGoogle Scholar
  95. 95.
    Heyder J (2004) Deposition of inhaled particles in the human respiratory tract and consequences for regional targeting in respiratory drug delivery. Proc Am Thorac Soc 1(4):315–320. doi: 10.1513/pats.200409-046TA PubMedCrossRefGoogle Scholar
  96. 96.
    de Boer AH, Gjaltema D, Hagedoorn P, Frijlink HW (2002) Characterization of inhalation aerosols: a critical evaluation of cascade impactor analysis and laser diffraction technique. Int J Pharm 249(1–2):219–231. doi: 10.1016/s0378-5173(02)00526-4 PubMedCrossRefGoogle Scholar
  97. 97.
    Emami J, Hamishehkar H, Najafabadi AR, Gilani K, Minaiyan M, Mahdavi H, Mirzadeh H, Fakhari A, Nokhodchi A (2009) Particle size design of PLGA microspheres for potential pulmonary drug delivery using response surface methodology. J Microencapsul 26(1):1–8. doi: 10.1080/02652040802083900 PubMedCrossRefGoogle Scholar
  98. 98.
    Mohamed F, van der Walle CF (2008) Engineering biodegradable polyester particles with specific drug targeting and drug release properties. J Pharm Sci 97(1):71–87. doi: 10.1002/jps.21082 PubMedCrossRefGoogle Scholar
  99. 99.
    Dailey LA, Kleemann E, Wittmar M, Gessler T, Schmehl T, Roberts C, Seeger W, Kissel T (2003) Surfactant-free, biodegradable nanoparticles for aerosol therapy based on the branched polyesters, DEAPA-PVAL-g-PLGA. Pharm Res 20(12):2011–2020. doi: 10.1023/b:pham.0000008051.94834.10 PubMedCrossRefGoogle Scholar
  100. 100.
    Cu Y, Saltzman WM (2009) Mathematical modeling of molecular diffusion through mucus. Adv Drug Deliv Rev 61(2):101–114. doi: 10.1016/j.addr.2008.09.006 PubMedCrossRefGoogle Scholar
  101. 101.
    Cone RA (2009) Barrier properties of mucus. Adv Drug Deliv Rev 61(2):75–85. doi: 10.1016/j.addr.2008.09.008 PubMedCrossRefGoogle Scholar
  102. 102.
    Walker TS, Tomlin KL, Worthen GS, Poch KR, Lieber JG, Saavedra MT, Fessler MB, Malcolm KC, Vasil ML, Nick JA (2005) Enhanced Pseudomonas aeruginosa biofilm development mediated by human neutrophils. Infect Immun 73(6):3693–3701. doi: 10.1128/iai.73.6.3693-3701.2005 PubMedCrossRefGoogle Scholar
  103. 103.
    Suk JS, Lai SK, Wang Y-Y, Ensign LM, Zeitlin PL, Boyle MP, Hanes J (2009) The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 30(13):2591–2597. doi: 10.1016/j.biomaterials.2008.12.076 PubMedCrossRefGoogle Scholar
  104. 104.
    Lai SK, O’Hanlon DE, Harrold S, Man ST, Wang Y-Y, Cone R, Hanes J (2007) Rapid transport of large polymeric nanoparticles in fresh undiluted human mucus. Proc Natl Acad Sci U S A 104(5):1482–1487. doi: 10.1073/pnas.0608611104 PubMedCrossRefGoogle Scholar
  105. 105.
    Sanders NN, De Smedt SC, Van Rompaey E, Simoens P, De Baets F, Demeester J (2000) Cystic fibrosis sputum: a barrier to the transport of nanospheres. Am J Respir Crit Care Med 162(5):1905–1911PubMedCrossRefGoogle Scholar
  106. 106.
    Sanders NN, Van Rompaey E, De Smedt SC, Demeester J (2002) On the transport of lipoplexes through cystic fibrosis sputum. Pharm Res 19(4):451–456. doi: 10.1023/a:1015139527747 PubMedCrossRefGoogle Scholar
  107. 107.
    Kushwah R, Oliver JR, Cao H, Hu J (2007) Nacystelyn enhances adenoviral vector-mediated gene delivery to mouse airways. Gene Ther 14(16):1243–1248. doi: 10.1038/sj.gt.3302968 PubMedCrossRefGoogle Scholar
  108. 108.
    Ferrari S, Kitson C, Farley R, Steel R, Marriott C, Parkins DA, Scarpa M, Wainwright B, Evans MJ, Colledge WH, Geddes DM, Alton EW (2001) Mucus altering agents as adjuncts for nonviral gene transfer to airway epithelium. Gene Ther 8(18):1380–1386. doi: 10.1038/sj.gt.3301525 PubMedCrossRefGoogle Scholar
  109. 109.
    Yang Y, Tsifansky MD, Wu C-J, Yang HI, Schmidt G, Yeo Y (2010) Inhalable antibiotic delivery using a dry powder co-delivering recombinant deoxyribonuclease and ciprofloxacin for treatment of cystic fibrosis. Pharm Res 27(1):151–160. doi: 10.1007/s11095-009-9991-2 PubMedCrossRefGoogle Scholar
  110. 110.
    Yang Y, Tsifansky MD, Shin S, Lin Q, Yeo Y (2011) Mannitol-guided delivery of ciprofloxacin in artificial cystic fibrosis mucus model. Biotechnol Bioeng 108(6):1441–1449. doi: 10.1002/bit.23046 PubMedCrossRefGoogle Scholar
  111. 111.
    Adi H, Young PM, Chan H-K, Agus H, Traini D (2010) Co-spray-dried mannitol–ciprofloxacin dry powder inhaler formulation for cystic fibrosis and chronic obstructive pulmonary disease. Eur J Pharm Sci 40(3):239–247. doi: 10.1016/j.ejps.2010.03.020 PubMedCrossRefGoogle Scholar
  112. 112.
    Geller DE, Flume PA, Griffith DC, Morgan E, White D, Loutit JS, Dudley MN (2011) Pharmacokinetics and safety of MP-376 (levofloxacin inhalation solution) in cystic fibrosis subjects. Antimicrob Agents Chemother 55(6):2636–2640. doi: 10.1128/aac.01744-10 PubMedCrossRefGoogle Scholar
  113. 113.
    Assael BM (2011) Aztreonam inhalation solution for suppressive treatment of chronic Pseudomonas aeruginosa lung infection in cystic fibrosis. Expert Rev Anti Infect Ther 9(11):967–973. doi: 10.1586/eri.11.131 PubMedCrossRefGoogle Scholar
  114. 114.
    Plosker GL (2011) Aztreonam lysine for inhalation solution in cystic fibrosis: profile report. Paediatr Drugs 13(2):129–131. doi: 10.2165/11206940-000000000-00000 PubMedCrossRefGoogle Scholar
  115. 115.
    Kirkby S, Novak K, McCoy K (2011) Aztreonam (for inhalation solution) for the treatment of chronic lung infections in patients with cystic fibrosis: an evidence-based review. Core Evid 6:59–66PubMedCrossRefGoogle Scholar
  116. 116.
    Plosker GL (2010) Aztreonam lysine for inhalation solution in cystic fibrosis. Drugs 70(14):1843–1855PubMedCrossRefGoogle Scholar
  117. 117.
    McColley SA, Trapnell B, Kissner D, McKevitt M, Montgomery B, Rosen J; FTIS Study Group (2010) Fosfomycin/tobramycin for inhalation (FTI): microbiological results of a phase 2 placebo-controlled trial in patients with cystic fibrosis and Pseudomonas aeruginosa. Pediatr Pulmonol 45:338Google Scholar
  118. 118.
    Weers JG, Bell J, Chan HK, Cipolla D, Dunbar C, Hickey AJ, Smith IJ (2010) Pulmonary formulations: what remains to be done? J Aerosol Med Pulm Drug Deliv 23:S5–S23. doi: 10.1089/jamp.2010.0838 PubMedCrossRefGoogle Scholar
  119. 119.
    Adi H, Young PM, Chan H-K, Salama R, Traini D (2010) Controlled release antibiotics for dry powder lung delivery. Drug Dev Ind Pharm 36(1):119–126. doi: 10.3109/03639040903099769 PubMedCrossRefGoogle Scholar
  120. 120.
    Westerman EM, De Boer AH, Le Brun PPH, Touw DJ, Roldaan AC, Frijlink HW, Heijerman HGM (2007) Dry powder inhalation of colistin in cystic fibrosis patients: a single dose pilot study. J Cyst Fibros 6(4):284–292. doi: 10.1016/j.jcf.2006.10.010 PubMedCrossRefGoogle Scholar
  121. 121.
    Hodson ME, Gallagher CG, Govan JRW (2002) A randomised clinical trial of nebulised tobramycin or colistin in cystic fibrosis. Eur Respir J 20(3):658–664. doi: 10.1183/09031936.02.00248102 PubMedCrossRefGoogle Scholar
  122. 122.
    Schuster A, Haliburn C, Döring G, Goldman MH; Freedom Study Group (2013) Safety, efficacy and convenience of colistimethate sodium dry powder for inhalation (Colobreathe DPI) in patients with cystic fibrosis: a randomised study. Thorax 68(4):344–350. doi: 10.1136/thoraxjnl-2012-202059 PubMedCrossRefGoogle Scholar
  123. 123.
    Doan TV, Couet W, Olivier JC (2011) Formulation and in vitro characterization of inhalable rifampicin-loaded PLGA microspheres for sustained lung delivery. Int J Pharm 414(1–2):112–117. doi: 10.1016/j.ijpharm.2011.05.007 PubMedCrossRefGoogle Scholar
  124. 124.
    Cook RO, Pannu RK, Kellaway IW (2005) Novel sustained release microspheres for pulmonary drug delivery. J Control Release 104(1):79–90. doi: 10.1016/j.jconrel.2005.01.003 PubMedCrossRefGoogle Scholar
  125. 125.
    Rukholm G, Mugabe C, Azghani AO, Omri A (2006) Antibacterial activity of liposomal gentamicin against Pseudomonas aeruginosa: a time–kill study. Int J Antimicrob Agents 27(3):247–252. doi: 10.1016/j.ijantimicag.2005.10.021 PubMedCrossRefGoogle Scholar
  126. 126.
    Mugabe C, Azghani AO, Omri A (2005) Liposome-mediated gentamicin delivery: development and activity against resistant strains of Pseudomonas aeruginosa isolated from cystic fibrosis patients. J Antimicrob Chemother 55(2):269–271. doi: 10.1093/jac/dkh518 PubMedCrossRefGoogle Scholar
  127. 127.
    Ré M-I (2006) Formulating drug delivery systems by spray drying. Dry Technol 24(4):433–446. doi: 10.1080/07373930600611877 CrossRefGoogle Scholar
  128. 128.
    Varde NK, Pack DW (2004) Microspheres for controlled release drug delivery. Expert Opin Biol Ther 4(1):35–51. doi: 10.1517/14712598.4.1.35 PubMedCrossRefGoogle Scholar
  129. 129.
    Liu W, Yang X-L, Ho WS (2011) Preparation of uniform-sized multiple emulsions and micro/nano particulates for drug delivery by membrane emulsification. J Pharm Sci 100(1):75–93. doi: 10.1002/jps.22272 PubMedCrossRefGoogle Scholar
  130. 130.
    Manca ML, Mourtas S, Dracopoulos V, Fadda AM, Antimisiaris SG (2008) PLGA, chitosan or chitosan-coated PLGA microparticles for alveolar delivery? A comparative study of particle stability during nebulization. Colloids Surf B Biointerfaces 62(2):220–231. doi: 10.1016/j.colsurfb.2007.10.005 PubMedCrossRefGoogle Scholar
  131. 131.
    Ravindra S, Varaprasad K, Narayana Reddy N, Vimala K, Mohana Raju K (2011) Biodegradable microspheres for controlled release of an antibiotic ciprofloxacin. J Polym Environ 19(2):413–418. doi: 10.1007/s10924-011-0290-8 CrossRefGoogle Scholar
  132. 132.
    Mura S, Hillaireau H, Nicolas J, Le Droumaguet B, Gueutin C, Zanna S, Tsapis N, Fattal E (2011) Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int J Nanomedicine 6(1):2591–2605. doi: 10.2147/IJN.S24552 PubMedGoogle Scholar
  133. 133.
    Yang Y, Bajaj N, Xu P, Ohn K, Tsifansky MD, Yeo Y (2009) Development of highly porous large PLGA microparticles for pulmonary drug delivery. Biomaterials 30(10):1947–1953. doi: 10.1016/j.biomaterials.2008.12.044 PubMedCrossRefGoogle Scholar
  134. 134.
    O’Hara P, Hickey AJ (2000) Respirable PLGA microspheres containing rifampicin for the treatment of tuberculosis: manufacture and characterization. Pharm Res 17(8):955–961. doi: 10.1023/a:1007527204887 PubMedCrossRefGoogle Scholar
  135. 135.
    Giovagnoli S, Blasi P, Schoubben A, Rossi C, Ricci M (2007) Preparation of large porous biodegradable microspheres by using a simple double-emulsion method for capreomycin sulfate pulmonary delivery. Int J Pharm 333(1–2):103–111. doi: 10.1016/j.ijpharm.2006.10.005 PubMedCrossRefGoogle Scholar
  136. 136.
    Gupta V, Rawat A, Ahsan F (2010) Feasibility study of aerosolized prostaglandin E(1) microspheres as a noninvasive therapy for pulmonary arterial hypertension. J Pharm Sci 99(4):1774–1789. doi: 10.1002/jps.21946 PubMedGoogle Scholar
  137. 137.
    Ventura CA, Tommasini S, Crupi E, Giannone I, Cardile V, Musumeci T, Puglisi G (2008) Chitosan microspheres for intrapulmonary administration of moxifloxacin: Interaction with biomembrane models and in vitro permeation studies. Eur J Pharm Biopharm 68(2):235–244. doi: 10.1016/j.ejpb.2007.05.011 PubMedCrossRefGoogle Scholar
  138. 138.
    Chowdary KPR, Rao YS (2004) Mucoadhesive microspheres for controlled drug delivery. Biol Pharm Bull 27(11):1717–1724. doi: 10.1248/bpb.27.1717 PubMedCrossRefGoogle Scholar
  139. 139.
    Chen HY, Yuan M, Livermore DM (1995) Mechanisms of resistance to β-lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993. J Med Microbiol 43(4):300–309. doi: 10.1099/00222615-43-4-300 PubMedCrossRefGoogle Scholar
  140. 140.
    Sharma R, Saxena D, Dwivedi AK, Misra A (2001) Inhalable microparticles containing drug combinations to target alveolar macrophages for treatment of pulmonary tuberculosis. Pharm Res 18(10):1405–1410. doi: 10.1023/a:1012296604685 PubMedCrossRefGoogle Scholar
  141. 141.
    Ventura CA, Cannavà C, Stancanelli R, Paolino D, Cosco D, La Mantia A, Pignatello R, Tommasini S (2011) Gemcitabine-loaded chitosan microspheres. Characterization and biological in vitro evaluation. Biomed Microdevices 13(5):799–807. doi: 10.1007/s10544-011-9550-6 PubMedCrossRefGoogle Scholar
  142. 142.
    Tuli RA, Dargaville TR, George GA, Islam N (2012) Polycaprolactone microspheres as carriers for dry powder inhalers: effect of surface coating on aerosolization of salbutamol sulfate. J Pharm Sci 101(2):733–745. doi: 10.1002/jps.22777 PubMedCrossRefGoogle Scholar
  143. 143.
    Corrigan DO, Healy AM, Corrigan OI (2006) Preparation and release of salbutamol from chitosan and chitosan co-spray dried compacts and multiparticulates. Eur J Pharm Biopharm 62(3):295–305. doi: 10.1016/j.ejpb.2005.09.008 PubMedCrossRefGoogle Scholar
  144. 144.
    Learoyd TP, Burrows JL, French E, Seville PC (2008) Modified release of beclometasone dipropionate from chitosan-based spray-dried respirable powders. Powder Technol 187(3):231–238. doi: 10.1016/j.powtec.2008.02.015 CrossRefGoogle Scholar
  145. 145.
    Sakagami M, Kinoshita W, Sakon K, Sato J, Makino Y (2002) Mucoadhesive beclomethasone microspheres for powder inhalation: their pharmacokinetics and pharmacodynamics evaluation. J Control Release 80(1–3):207–218. doi: 10.1016/s0168-3659(02)00034-2 PubMedCrossRefGoogle Scholar
  146. 146.
    Harsha S, Chandramouli R, Rani S (2009) Ofloxacin targeting to lungs by way of microspheres. Int J Pharm 380(1–2):127–132. doi: 10.1016/j.ijpharm.2009.07.020 PubMedCrossRefGoogle Scholar
  147. 147.
    Jeong Y-I, Kim D-G, Seo D-H, Jang M-K, Nah J-W (2008) Multiparticulation of ciprofloxacin HCl-encapsulated chitosan microspheres using poly(dl-lactide-co-glycolide). J Ind Eng Chem 14(6):747–751. doi: 10.1016/j.jiec.2008.05.004 CrossRefGoogle Scholar
  148. 148.
    Dillen K, Vandervoort J, Van den Mooter G, Verheyden L, Ludwig A (2004) Factorial design, physicochemical characterisation and activity of ciprofloxacin-PLGA nanoparticles. Int J Pharm 275(1–2):171–187. doi: 10.1016/j.ijpharm.2004.01.033 PubMedCrossRefGoogle Scholar
  149. 149.
    Poyner EA, Alpar HO, Almeida AJ, Gamble MD, Brown MRW (1995) A comparative study on the pulmonary delivery of tobramycin encapsulated into liposomes and PLA microspheres following intravenous and endotracheal delivery. J Control Release 35(1):41–48. doi: 10.1016/0168-3659(95)00017-3 CrossRefGoogle Scholar
  150. 150.
    Cystic Fibrosis Foundation (2012) Patient registry. Annual data report 2011. Available online at: http://www.cff.org/UploadedFiles/research/ClinicalResearch/2011-Patient-Registry.pdf. Accessed 11 March 2013
  151. 151.
    Cystic Fibrosis Foundation (2012) Drug development pipeline. Available online at: http://www.cff.org/research/DrugDevelopmentPipeline/. Accessed 8 January 2013

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • M. C. Gaspar
    • 1
    Email author
  • W. Couet
    • 3
    • 4
  • J.-C. Olivier
    • 3
    • 4
  • A. A. C. C. Pais
    • 2
  • J. J. S. Sousa
    • 1
  1. 1.Centre for Pharmaceutical Studies (CEF), Faculty of PharmacyUniversity of Coimbra, Pólo das Ciências da SaúdeCoimbraPortugal
  2. 2.Chemistry DepartmentUniversity of CoimbraCoimbraPortugal
  3. 3.INSERM, U 1070PoitiersFrance
  4. 4.Faculty of Medicine and PharmacyUniversity of PoitiersPoitiersFrance

Personalised recommendations