Combinations of cefoxitin plus other β-lactams are synergistic in vitro against community associated methicillin-resistant Staphylococcus aureus

  • R. Banerjee
  • M. G. Fernandez
  • N. Enthaler
  • C. Graml
  • K. E. Greenwood-Quaintance
  • R. Patel


In vitro studies demonstrate that oxacillin minimal inhibitory concentrations (MICs) of methicillin-resistant S. aureus (MRSA) strains USA300 and 400 decrease in the presence of cefoxitin. The aim of this study was to characterize the activity of cefoxitin plus β-lactams against a collection of MRSA isolates. We assessed the in vitro antimicrobial activity of a selection of β-lactams alone and together with subinhibitory concentrations of cefoxitin against a collection of MRSA, methicillin-susceptible S. aureus (MSSA), and vancomycin-intermediate S. aureus (VISA) isolates using MICs and time kill assays. For community-associated (CA) MRSA strains USA300 and USA400, MICs of nafcillin, cefazolin, cephalexin, cefuroxime, ceftriaxone and cefotaxime decreased by 8- to 64-times in the presence of 10 μg/ml cefoxitin. In contrast, for hospital-associated (HA) strains COLn, N315, and Mu50, there was no change in any β-lactam MIC in the presence of cefoxitin. When combined with cefoxitin, the cephalexin MIC decreased for eight CA-MRSA and five MSSA sequence types but did not change for seven HA-MRSA sequence types. β-lactam/cefoxitin combinations were synergistic against CA- but not HA-MRSA strains in time kill assays. Cefoxitin combined with a variety of β-lactams enhances their activity against CA-MRSA strains in vitro. Further studies of combination β-lactam therapy may provide insight into β-lactam biology, penicillin binding protein cooperativity, and novel therapeutic strategies against MRSA.


  1. 1.
    Klevens RM, Morrison MA, Nadle J, Petit S, Gershman K, Ray S, Harrison LH, Lynfield R, Dumyati G, Townes JM, Craig AS, Zell ER, Fosheim GE, McDougal LK, Carey RB, Fridkin SK (2007) Invasive methicillin-resistant Staphylococcus aureus infections in the United States. JAMA 298:1763–1771PubMedCrossRefGoogle Scholar
  2. 2.
    Purcell K, Fergie J (2005) Epidemic of community-acquired methicillin-resistant Staphylococcus aureus infections. Arch Pediatr Adolesc Med 159:980–985PubMedCrossRefGoogle Scholar
  3. 3.
    Moran GJ, Krishnadasan A, Gorwitz RJ, Fosheim EE, McDougal LK, Carey RB, Talan DA (2006) Methicillin-resistant S. aureus infections among patients in the emergency department. N Engl J Med 355:666–674PubMedCrossRefGoogle Scholar
  4. 4.
    DeLeo FR, Chambers HR (2009) Reemergence of antibiotic-resistant Staphylococcus aureus in the genomics era. J Clin Invest 119:2464–2474PubMedCrossRefGoogle Scholar
  5. 5.
    Hersh AL, Chambers HF, Maselli JH, Gonzales R (2008) National trends in ambulatory visits and antibiotic prescribing for skin and soft-tissue infections. Arch Inter Med 168:1585–1591CrossRefGoogle Scholar
  6. 6.
    Naseri I, Jerris RC, Sobol SE (2009) Nationwide trends in pediatric Staphylococus aureus head and neck infections. Arch Otolaryngol Head Neck Surg 135:14–16PubMedCrossRefGoogle Scholar
  7. 7.
    Dombrowski J, Winston LG (2008) Clinical failures of appropriately-treated methicillin-resistant Staphylococcus aureus infections. J Infect 57:110–115PubMedCrossRefGoogle Scholar
  8. 8.
    Hawkins C (2007) Persistent Staphylococcus aureus bacteremia: an analysis of risk factors and outcomes. Arch Int Med 167:1861–1867CrossRefGoogle Scholar
  9. 9.
    Howe RA, Monk A, Wootton M, Walsh TR (2004) Vancomycin susceptibility within methicillin-resistant Staphylococcus aureus lineages. Emerg Infect Dis 10:855–857PubMedCrossRefGoogle Scholar
  10. 10.
    Sakoulas G Jr, Moellering RC Jr (2008) Increasing antibiotic resistance among methicillin-resistant Staphylococcus aureus strains. Clin Infect Dis 46:S360–S367PubMedCrossRefGoogle Scholar
  11. 11.
    Sakoulas G, Moise-Broder PA, Schentag J, Forrest A Jr, Moellering RC Jr, Eliopoulos GM (2004) Relationship of MIC and bactericidal activity to efficacy of vancomycin for treatment of methicillin-resistant Staphylococcus aureus bacteremia. J Clin Microbiol 42:2398–2402PubMedCrossRefGoogle Scholar
  12. 12.
    Boucher HW, Talbot GH, Bradley JS, Edwards JE, Gilbert D, Rice LB, Scheld M, Spellberg B, Bartlett J (2009) Bad bugs, no drugs: No ESKAPE! An update from the Infectious Diseases Society of America. Clin Infect Dis 48:1–-12PubMedCrossRefGoogle Scholar
  13. 13.
    Deresinski S (2009) Vancomycin heteroresistance and methicillin-resistant Staphylococcus aureus. J Infect Dis 199:605–609PubMedCrossRefGoogle Scholar
  14. 14.
    Hayden MK, Rezai K, Hayes RA, Lolans K, Quinn JP, Weinstein RA (2005) Development of daptomycin resistance in vivo in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43:5285–5287PubMedCrossRefGoogle Scholar
  15. 15.
    Hiramatsu K, Aritaka N, Hanaki H, Kawasaki S, Hosoda Y, Hori S, Fukuchi Y, Kobayashi I (1997) Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350:1670–1673PubMedCrossRefGoogle Scholar
  16. 16.
    Antignac A, Tomasz A (2009) Reconstruction of the phenotypes of methicillin-resistant Staphylococcus aureus by replacement of the Staphylococcal cassette chromosome mec with a plasmid-borne copy of Staphylococcus sciuri pbpD gene. Antimicro Agents Chemother 53:435–441CrossRefGoogle Scholar
  17. 17.
    Katayama Y, Ito T, Hiramatsu K (2000) A new class of genetic element, staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 44:1549–1555PubMedCrossRefGoogle Scholar
  18. 18.
    Wu S, Piscitelli C, Lencastre HD, Tomasz A (1996) Tracking the evolutionary origin of the methicillin resistance gene: cloning and sequencing of a homologue of mecA from a methicillin susceptible strain of Staphylococcus sciuri. Microb Drug Resist 2:435–441PubMedCrossRefGoogle Scholar
  19. 19.
    Zhou Y, Antignac A, Wu SW, Tomasz A (2008) Penicillin-binding proteins and cell wall composition in b-lactam sensitive and -resistant strains of Staphylococcus sciuri. J Bacteriol 190:508–514PubMedCrossRefGoogle Scholar
  20. 20.
    Kozarich JW, Strominger JL (1978) A membrane enzyme from Staphylococcus aureus which catalyzes transpeptidase, carboxypeptidase, and penicillinase activities. J Biol Chem 25:1272–1278Google Scholar
  21. 21.
    Wyke AW, Ward JB, Hayes MV, Curtis NAC (1981) A role in vivo for penicillin-binding protein 4 of Staphylococcus aureus. Eur J Biochem 119:389–393PubMedCrossRefGoogle Scholar
  22. 22.
    Navratna V, Nadig S, Sood V, Prasad K, Arakere G, Gopal B (2010) Molecular basis for the role of Staphylococcus aureus penicillin binding protein 4 in antimicrobial resistance. J Bact 192:134–144PubMedCrossRefGoogle Scholar
  23. 23.
    Katayama Y, Zhang HZ, Hong D, Chambers HF (2003) Jumping the barrier to b-lactam resistance in Staphylococcus aureus. J Bacteriol 185:5465–5472PubMedCrossRefGoogle Scholar
  24. 24.
    Memmi G, Filipe SR, Pinho MG, Fu Z, Cheung A (2008) Staphylococcus aureus PBP4 is essential for beta-lactam resistance in community-acquired methicillin-resistant strains. Antimicro Agents Chemother 52:3955–3966CrossRefGoogle Scholar
  25. 25.
    Chambers HF, Sachdeva M (1990) Binding of beta-lactam antibiotics to penicillin-binding proteins in methicillin-resistant Staphylococcus aureus. J Infect Dis 161:1170–1176PubMedCrossRefGoogle Scholar
  26. 26.
    Feldman WE (1976) Concentrations of bacteria in cerebrospinal fluid of patients with bacterial meningitis. J Pediatrics 88:549–552CrossRefGoogle Scholar
  27. 27.
    Fowler VG, Scheld WM, Bayer AS (2005) Endocarditis and intravascular infections. In: Mandell GL, Bennett JE, Dolin R (eds) Principles and practice of infectious diseases. Elsevier, PA, p 980Google Scholar
  28. 28.
    Cui L, Tominaga E, Neoh H-M, Hiramatsu K (2006) Correlation between reduced daptomycin susceptibility and vancomycin resistance in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 50:1079–1082PubMedCrossRefGoogle Scholar
  29. 29.
    Sakoulas G, Alder J, Thauvin-Eliopoulos C, Moellering RC, Eliopoulos GM (2006) Induction of daptomycin heterogeneous susceptibility in Staphylococcus aureus by exposure to vancomycin. Antimicrob Agents Chemother 50:1581–1585PubMedCrossRefGoogle Scholar
  30. 30.
    Delgado A, Riordan JT, Lamichhane-Khada R, Winnett DC, Jimenez J, Robinson K, O’Brien FG, Cantore SA, Gustafson JE (2007) Hetero-vancomycin intermediate methicillin-resistant Staphylococcus aureus isolate from a medical center in las Cruces, New Mexico. J Clin Microbiol 45:1325–1329PubMedCrossRefGoogle Scholar
  31. 31.
    Euba G, Lora-Tamayo J, Murillo O, Pedrero S, Cabo J, Verdaguer R, Ariza J (2009) Pilot study of ampicillin-ceftriaxone combination for treatment of orthopedic infections due to Enterococcus faecalis. Antimicrob Agents Chemother 53:4305–4310PubMedCrossRefGoogle Scholar
  32. 32.
    Gavalda J, Len O, Miro JM, Munoz P, Montejo M, Alarcon A, Torre-Cisneros JDL, Pena C, Martinez-Lacasa X, Sarria C, Bou G, Aguado JM, Navas E, Romeu J, Marco F, Torres C, Tornos P, Planes A, Falco V, Almirante B, Pahissa A (2007) Treatment of Enterococcus faecalis endocarditis with ampicillin plus ceftriaxone. Ann Intern Med 146:574–579PubMedCrossRefGoogle Scholar
  33. 33.
    Mainardi J-L, Gutmann L, Acar JF, Goldstein FW (1995) Synergistic effect of amoxicillin and cefotaxime against Enterococcus faecalis. Antimicrob Agents Chemother 39:1984–1987PubMedCrossRefGoogle Scholar
  34. 34.
    Miro JM, Cervera C, Garcia-de-la-Maria C, Rio AD, Armero Y, Mestres CA, Grau JM, Marco F, Moreno A (2008) Success of ampicillin plus ceftriaxone rescue therapy for a relapse of Enterococcus faecalis native-valve endocarditis and in vitro data on double beta-lactam activity. Scand J Infect Dis 40:968–972PubMedCrossRefGoogle Scholar
  35. 35.
    Pasticci MB, Mencacci A, Moretti A, Palladino N, Lapalorcia LM, Bistoni F, Baldelli F (2008) In vitro antimicrobial activity of ampicillin-ceftriaxone and ampicillin-ertapenem combinations against clinical isolates of Enterococcus faecalis with high levels of aminoglycoside resistance. Open Microbiol J 2:79–84PubMedCrossRefGoogle Scholar
  36. 36.
    Leski TA, Tomasz A (2005) Role of penicillin-binding protein 2 (PBP2) in the antibiotic susceptibility and cell wall cross-linking of Staphylococcus aureus: Evidence for the cooperative functioning of PBP2, PBP4, and PBP2a. J Bacteriol 187:1815PubMedCrossRefGoogle Scholar
  37. 37.
    Georgopapadakou NH, Dix BA, Mauriz YR (1986) Possible physiological functions of penicillin-binding proteins in Staphylococcus aureus. Antimicrob Agents Chemother 29:333–336PubMedCrossRefGoogle Scholar
  38. 38.
    Matsuda K, Asahi Y, Sanada M, Nakagawa S, Tanaka N, Inoue M (1991) In vitro activity of imipenem combined with beta-lactam antibiotics for methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 27:809–815PubMedCrossRefGoogle Scholar
  39. 39.
    Sumita Y, Mitsuhashi S (1991) In vitro synergistic activity between meropenem and other beta-lactams against methicillin-resistant Staphylococcus aureus. New Antimicrob Agents 10:77–84Google Scholar
  40. 40.
    Higgins PG, Rosato AE, Seifert H, Archer GL, Wisplinghoff H (2009) Differential expression of ccrA in methicillin-resistant Staphylococcus aureus strains carrying staphylococcal cassette chromosome mec type II and IVa elements. Antimicrob Agents Chemother 53:4556–4558PubMedCrossRefGoogle Scholar
  41. 41.
    Truven Health Analytics (2010) Micromedex®1.0 (Healthcare Series) evTRHI. Greenwood Village, Colorado, USA. Available at: Accessed May 5, 2010
  42. 42.
    Chambers HF, Kartalija M, Sande M (1995) Ampicillin, sulbactam, and rifampin combination treatment of experimental methicillin-resistant Staphylococcus aureus endocarditis in rabbits. J Infect Dis 171:897–902PubMedCrossRefGoogle Scholar
  43. 43.
    Chambers HF, Miller MH (1987) Emergence of resistance to cephalothin and gentamicin during combination therapy for methicillin-resistant Staphylococcus aureus endocarditis in rabbits. J Infect Dis 155:581–585PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • R. Banerjee
    • 1
  • M. G. Fernandez
    • 2
  • N. Enthaler
    • 2
  • C. Graml
    • 2
  • K. E. Greenwood-Quaintance
    • 3
  • R. Patel
    • 3
  1. 1.Division of Pediatric Infectious DiseasesMayo ClinicRochesterUSA
  2. 2.Paracelsus Medical Private UniversitySalzburgAustria
  3. 3.Division of Clinical Microbiology, Department of Laboratory Medicine and PathologyMayo ClinicRochesterUSA

Personalised recommendations