Therapeutic immunomodulation using a virus—the potential of inactivated orf virus

  • O. Weber
  • A. A. Mercer
  • A. Friebe
  • P. Knolle
  • H.-D. Volk


Viruses can manipulate the immune response against them by various strategies to influence immune cells, i.e. by over-activation leading to functional inactivation, bypassing antigen presentation or even suppression of effector functions. Little is known, however, about how these features of immune regulation and modulation could be used for therapeutic purposes. Reasons for this include the complexity of immune regulatory mechanisms under certain disease conditions and the risks that infections with viruses pose to human beings. The orf virus (ORFV), a member of the Parapoxvirus genus of the poxvirus family, is known as a common pathogen in sheep and goats worldwide. The inactivated ORFV, however, has been used as a preventative as well as therapeutic immunomodulator in veterinary medicine in different species. Here, we review the key results obtained in pre-clinical studies or clinical studies in veterinary medicine to characterise the therapeutic potential of inactivated ORFV. Inactivated ORFV has strong effects on cytokine secretion in mice and human immune cells, leading to an auto-regulated loop of initial up-regulation of inflammatory and Th1-related cytokines, followed by Th2-related cytokines that attenuate immunopathology. The therapeutic potential of inactivated ORFV has been recognised in several difficult-to-treat disease areas, such as chronic viral diseases, liver fibrosis or various forms of cancer. Further research will be required in order to evaluate the full beneficial potential of inactivated ORFV for therapeutic immunomodulation.


  1. 1.
    Moss B (2007) Poxviridae: the viruses and their replication. In: Knipe DM, Howley PM (eds) Fields virology, vol 2. Wolters Kluwer Health/Lippincott Williams & Wilkins, Philadelphia, pp 2905–2946Google Scholar
  2. 2.
    Haig DM, Mercer AA (1998) Ovine diseases. Orf. Vet Res 29:311–326PubMedGoogle Scholar
  3. 3.
    Weber O, Knolle P, Volk H-D (2007) Immunomodulation by inactivated Orf virus (ORFV)—therapeutic potential. In: Mercer AA, Schmidt A, Weber O (eds) Poxviruses. Birkhäuser, Basel, pp 297–310CrossRefGoogle Scholar
  4. 4.
    Fleming SB, Mercer AA (2007) Genus Parapoxvirus. In: Mercer AA, Schmidt A, Weber O (eds) Poxviruses. Birkhäuser, Basel, pp 127–165CrossRefGoogle Scholar
  5. 5.
    Mayr A, Büttner M, Wolf G, Meyer H, Czerny C (1989) Experimental detection of the paraspecific effects of purified and inactivated poxviruses. Zentralbl Veterinarmed B 36:81–99PubMedGoogle Scholar
  6. 6.
    Büttner M, Czerny CP, Lehner KH, Wertz K (1995) Interferon induction in peripheral blood mononuclear leukocytes of man and farm animals by poxvirus vector candidates and some poxvirus constructs. Vet Immunol Immunopathol 46:237–250PubMedCrossRefGoogle Scholar
  7. 7.
    Mayr B, Mayr A (1995) Present state of preclinical research on the efficacy and safety of para immunity inducers from poxviruses. A study of the literature. Tierarztl Prax 23:542–552PubMedGoogle Scholar
  8. 8.
    Mayr A, Siebert M (1990) Untersuchungen über die Wirksamkeit des Paramunitätsinducers PIND-ORF auf den durch Transportstress ausgelösten Kortisolanstieg beim Pferd. Tierärztl Umsch 45:677–682Google Scholar
  9. 9.
    Ziebell KL, Steinmann H, Kretzdorn D, Schlapp T, Failing K, Schmeer N (1997) The use of Baypamun N in crowding associated infectious respiratory disease: efficacy of Baypamun N (freeze dried product) in 4–10 month old horses. Zentralbl Veterinarmed B 44(9):529–536PubMedGoogle Scholar
  10. 10.
    Mayr B, Deininger S, Büttner M (1991) Treatment of chronic stomatitis of cats by local paramunization with PIND-ORF. Zentralbl Veterinarmed B 38:78–80PubMedGoogle Scholar
  11. 11.
    Berg G, Rüsse M (1994) Der Einsatz von Baypamun HK in der Mammatumorbehandlung der Hündin. Tierärztl Umschau 49:476–480Google Scholar
  12. 12.
    Fachinger V, Schlapp T, Strube W, Schmeer N, Saalmüller A (2000) Poxvirus-induced immunostimulating effects on porcine leukocytes. J Virol 74:7943–7951PubMedCrossRefGoogle Scholar
  13. 13.
    Schütze N, Raue R, Büttner M, Alber G (2009) Inactivated Parapoxvirus ovis activates canine blood phagocytes and T lymphocytes. Vet Microbiol 137:260–267PubMedCrossRefGoogle Scholar
  14. 14.
    Mayr A, Rättig H, Stickl H, Alexander M (1979) Paramunität, Paramunisierung, Paramunitätsinducer. Teil 1. Geschichtliche Entwicklung, Begriffsbestimmung und Wesen. Fortschr Med 97:1159–1160, 1162–1165PubMedGoogle Scholar
  15. 15.
    Mayr A, Rättig H, Stickl H, Alexander M (1979) Paramunität, Paramunisierung, Paramunitätsinducer. Teil 2.: Paramunitätsinducer, eigene Untersuchungen, Diskussion. Fortschr Med 97:1205–1210PubMedGoogle Scholar
  16. 16.
    Marsig E, Stickl H (1988) The effectiveness of immunomodulators from microorganisms and of animal pox preparations against tumor cell lines in vitro. Zentralbl Veterinarmed B 35:601–609PubMedGoogle Scholar
  17. 17.
    Mayr A, Büttner M, Wolf G, Meyer H, Czerny C (1989) Experimental detection of the paraspecific effects of purified and inactivated poxviruses. Zentralbl Veterinarmed B 36:81–99PubMedGoogle Scholar
  18. 18.
    Lear A, Hutchison G, Reid HW, Norval M, Haig DM (1996) Phenotypic characterisation of the dendritic cells accumulating in ovine dermis following primary and secondary orf virus infections. Eur J Dermatol 6:135–140CrossRefGoogle Scholar
  19. 19.
    Jenkinson DM, McEwen PE, Onwuka SK, Moss VA, Elder HY, Hutchison G, Reid HW (1990) The pathological changes and polymorphonuclear and mast cell responses in the skin of specific pathogen-free lambs following primary and secondary challenge with orf virus. Vet Dermatol 1:139–150CrossRefGoogle Scholar
  20. 20.
    Haig D, McInnes C, Deane D, Lear A, Myatt N, Reid H, Rothel J, Seow H-F, Wood P, Lyttle D, Mercer A (1996) Cytokines and their inhibitors in orf virus infection. Vet Immunol Immunopathol 54:261–267PubMedCrossRefGoogle Scholar
  21. 21.
    Haig DM, Hutchison G, Thomson J, Yirrell D, Reid HW (1996) Cytolytic activity and associated serine protease expression by skin and afferent lymph CD8+ T cells during orf virus reinfection. J Gen Virol 77(Pt 5):953–961PubMedCrossRefGoogle Scholar
  22. 22.
    Haig DM, McInnes CJ (2002) Immunity and counter-immunity during infection with the Parapoxvirus orf virus. Virus Res 88:3–16PubMedCrossRefGoogle Scholar
  23. 23.
    Haig D, Deane D, Percival A, Myatt N, Thomson J, Inglis L, Rothel J, Seow H-F, Wood P, Miller HRP, Reid HW (1996) The cytokine response of afferent lymph following orf virus reinfection of sheep. Vet Dermatol 7:11–20CrossRefGoogle Scholar
  24. 24.
    Friebe A, Friederichs S, Scholz K, Janssen U, Scholz C, Schlapp T, Mercer A, Siegling A, Volk HD, Weber O (2011) Characterization of immunostimulatory components of orf virus (Parapoxvirus ovis). J Gen Virol 92(Pt 7):1571–1584PubMedCrossRefGoogle Scholar
  25. 25.
    Fleming SB, McCaughan CA, Andrews AE, Nash AD, Mercer AA (1997) A homolog of interleukin-10 is encoded by the poxvirus orf virus. J Virol 71:4857–4861PubMedGoogle Scholar
  26. 26.
    Tzahar E, Moyer JD, Waterman H, Barbacci EG, Bao J, Levkowitz G, Shelly M, Strano S, Pinkas-Kramarski R, Pierce JH, Andrews GC, Yarden Y (1998) Pathogenic poxviruses reveal viral strategies to exploit the ErbB signaling network. EMBO J 17:5948–5963PubMedCrossRefGoogle Scholar
  27. 27.
    Lyttle DJ, Fraser KM, Fleming SB, Mercer AA, Robinson AJ (1994) Homologs of vascular endothelial growth factor are encoded by the poxvirus orf virus. J Virol 68:84–92PubMedGoogle Scholar
  28. 28.
    Haig DM, McInnes CJ, Thomson J, Wood A, Bunyan K, Mercer A (1998) The orf virus OV20.0L gene product is involved in interferon resistance and inhibits an interferon-inducible, double-stranded RNA-dependent kinase. Immunology 93:335–340PubMedCrossRefGoogle Scholar
  29. 29.
    Deane D, McInnes CJ, Percival A, Wood A, Thomson J, Lear A, Gilray J, Fleming S, Mercer A, Haig D (2000) Orf virus encodes a novel secreted protein inhibitor of granulocyte-macrophage colony-stimulating factor and interleukin-2. J Virol 74:1313–1320PubMedCrossRefGoogle Scholar
  30. 30.
    McKeever DJ, Jenkinson DM, Hutchison G, Reid HW (1988) Studies of the pathogenesis of orf virus infection in sheep. Comp Pathol 99:317–328CrossRefGoogle Scholar
  31. 31.
    Haig DM, McInnes CJ, Deane D, Reid HW, Mercer AA (1997) The immune and inflammatory response to orf virus. Comp Immunol Microbiol Infect Dis 20:197–204PubMedCrossRefGoogle Scholar
  32. 32.
    Jenkinson DM, Hutchison G, Onwuka SK, Reid HW (1991) Changes in the MHC class II+ dendritic cell population of ovine skin in response to orf virus infection. Vet Dermatol 2:1–9CrossRefGoogle Scholar
  33. 33.
    McKeever DJ, Reid HW, Inglis NF, Herring AJ (1987) A qualitative and quantitative assessment of the humoral antibody response of the sheep to orf virus infection. Vet Microbiol 15:229–241PubMedCrossRefGoogle Scholar
  34. 34.
    Yirrell DL, Reid HW, Norval M, Howie SE (1989) Immune response of lambs to experimental infection with orf virus. Vet Immunol Immunopathol 22:321–332PubMedCrossRefGoogle Scholar
  35. 35.
    Chand P, Kitching RP, Black DN (1994) Western blot analysis of virus-specific antibody responses for capripox and contagious pustular dermatitis viral infections in sheep. Epidemiol Infect 113:77–85CrossRefGoogle Scholar
  36. 36.
    Kruse N, Weber O (2001) Selective induction of apoptosis in antigen-presenting cells in mice by Parapoxvirus ovis. J Virol 75:4699–4704PubMedCrossRefGoogle Scholar
  37. 37.
    Chang WL, Baumgarth N, Yu D, Barry PA (2004) Human cytomegalovirus-encoded interleukin-10 homolog inhibits maturation of dendritic cells and alters their functionality. J Virol 78:8720–8731PubMedCrossRefGoogle Scholar
  38. 38.
    Castrucci G, Ferrari M, Osburn BI, Frigeri F, Barreca F, Tagliati S, Cuteri V (1996) A non-specific defence inducer in preventing clinical signs of infectious bovine rhinotracheitis in calves. Comp Immunol Microbiol Infect Dis 19:163–169PubMedCrossRefGoogle Scholar
  39. 39.
    Castrucci G, Osburn BI, Frigeri F, Ferrari M, Salvatori D, Lo Dico M, Barreca F (2000) The use of immunomodulators in the control of infectious bovine rhinotracheitis. Comp Immunol Microbiol Infect Dis 23:163–173PubMedCrossRefGoogle Scholar
  40. 40.
    Hammerl J, Wolf G, Berner H (1995) Klinische Untersuchungen zur Wirkung des Paramunitätsinducers Baypamun als Prophylaxe beim MMA-Komplex der Sau. Tierärztl Umsch 50:383–386Google Scholar
  41. 41.
    Kyriakis SC, Tzika ED, Lyras DN, Tsinas AC, Saoulidis K, Sarris K (1998) Effect of an inactivated Parapoxvirus based immunomodulator (Baypamun) on post weaning diarrhoea syndrome and wasting pig syndrome of piglets. Res Vet Sci 64:187–190PubMedCrossRefGoogle Scholar
  42. 42.
    Diehl K, Rosychuk RA (1993) Feline gingivitis–stomatitis–pharyngitis. Vet Clin North Am Small Anim Pract 23(1):139–153PubMedGoogle Scholar
  43. 43.
    Zetner K, Stoian C, Benetka V, Möstl K, Groiss S, Saalmüller A (2006) Clinical results of a new treatment of feline gingivostomatitis with an immunomodulator (Zylexis®). Praktischer Tierarzt 87:678–687Google Scholar
  44. 44.
    Mayr A, Mayr B (1999) A new concept in prophylaxis and therapy: paramunization by poxvirus inducers. Pesq Vet Bras 19:91–98CrossRefGoogle Scholar
  45. 45.
    Weber O, Siegling A, Friebe A, Limmer A, Schlapp T, Knolle P, Mercer A, Schaller H, Volk HD (2003) Inactivated Parapoxvirus ovis (Orf virus) has antiviral activity against hepatitis B virus and herpes simplex virus. J Gen Virol 84:1843–1852PubMedCrossRefGoogle Scholar
  46. 46.
    Siegemund S, Hartl A, von Buttlar H, Dautel F, Raue R, Freudenberg MA, Fejer G, Büttner M, Köhler G, Kirschning CJ, Sparwasser T, Alber G (2009) Conventional bone marrow-derived dendritic cells contribute to toll-like receptor-independent production of alpha/beta interferon in response to inactivated Parapoxvirus ovis. J Virol 83:9411–9422PubMedCrossRefGoogle Scholar
  47. 47.
    Friebe A, Siegling A, Friederichs S, Volk H-D, Weber O (2004) Immunomodulatory effects of inactivated Parapoxvirus ovis (ORF virus) on human peripheral immune cells: induction of cytokine secretion in monocytes and Th1-like cells. J Virol 78:9400–9411PubMedCrossRefGoogle Scholar
  48. 48.
    Friebe A, Friederichs S, Scholz K, Janssen U, Scholz C, Schlapp T, Mercer A, Siegling A, Volk H-D, Weber O (2011) Characterization of immunostimulatory components of Orf virus (Parapoxvirus ovis). J Gen Virol 92:1571–1584PubMedCrossRefGoogle Scholar
  49. 49.
    Krieg AM (2002) CpG motifs in bacterial DNA and their immune effects. Annu Rev Immunol 20:709–760PubMedCrossRefGoogle Scholar
  50. 50.
    Dranoff G, Mulligan RC (1995) Gene transfer as cancer therapy. Adv Immunol 58:417–454PubMedCrossRefGoogle Scholar
  51. 51.
    Ikeda H, Old LJ, Schreiber RD (2002) The roles of IFN gamma in protection against tumor development and cancer immunoediting. Cytokine Growth Factor Rev 13:95–109PubMedCrossRefGoogle Scholar
  52. 52.
    Brandacher G, Winkler C, Schroecksnadel K, Margreiter R, Fuchs D (2006) Antitumoral activity of interferon-γ involved in impaired immune function in cancer patients. Curr Drug Metab 7:599–612PubMedCrossRefGoogle Scholar
  53. 53.
    Fiebig H-H, Siegling A, Volk H-D, Friebe A, Knolle P, Limmer A, Weber O (2011) Inactivated orf virus (Parapoxvirus ovis) induces antitumoral activity in transplantable tumor models. Anticancer Res 31:4185–4190PubMedGoogle Scholar
  54. 54.
    Rintoul JL, Lemay CG, Tai LH, Stanford MM, Falls TJ, de Souza CT, Bridle BW, Daneshmand M, Ohashi PS, Wan Y, Lichty BD, Mercer AA, Auer RC, Atkins HL, Bell JC (2012) ORFV: a novel oncolytic and immune stimulating Parapoxvirus therapeutic. Mol Ther 20:1148–1157PubMedCrossRefGoogle Scholar
  55. 55.
    Nowatzky J, Knorr A, Hirth-Dietrich C, Siegling A, Volk H-D, Limmer A, Knolle P, Weber O (2012) Inactivated Orf virus (Parapoxvirus ovis) elicits antifibrotic activity in models of liver fibrosis. Hepatol Res. 2012 Sep 13. doi:10.1111/j.1872-034X.2012.01086.x. [Epub ahead of print]
  56. 56.
    Baroni GS, D’Ambrosio L, Curto P, Casini A, Mancini R, Jezequel AM, Benedetti A (1996) Interferon gamma decreases hepatic stellate cell activation and extracellular matrix deposition in rat liver fibrosis. Hepatology 23:1189–1199PubMedCrossRefGoogle Scholar
  57. 57.
    Weng H, Mertens PR, Gressner AM, Dooley S (2007) IFN-γ abrogates profibrogenic TGF-β signaling in liver by targeting expression of inhibitory and receptor Smads. J Hepatol 46:295–303PubMedCrossRefGoogle Scholar
  58. 58.
    Gurujeyalakshmi G, Giri SN (1995) Molecular mechanisms of antifibrotic effect of interferon gamma in bleomycin-mouse model of lung fibrosis: downregulation of TGF-beta and procollagen I and III gene expression. Exp Lung Res 21:791–808PubMedCrossRefGoogle Scholar
  59. 59.
    Shi MN, Zheng WD, Zhang LJ, Chen ZX, Wang XZ (2005) Effect of IL-10 on the expression of HSC growth factors in hepatic fibrosis rat. World J Gastroenterol 31:4788–4793Google Scholar
  60. 60.
    Shi MN, Huang YH, Zheng WD, Zhang LJ, Chen ZX, Wang XZ (2006) Relationship between transforming growth factor beta1 and anti-fibrotic effect of interleukin-10. World J Gastroenterol 12(15):2357–2362PubMedGoogle Scholar
  61. 61.
    Friedman SL, Bansal MB (2006) Reversal of hepatic fibrosis—fact or fantasy? Hepatology 43(2 Suppl 1):S82–S88PubMedCrossRefGoogle Scholar
  62. 62.
    El Bialy SA, El Kader KF, El-Ashmawy MB (2011) Current progress in antifibrotics. Curr Med Chem 18:3082–3092PubMedCrossRefGoogle Scholar
  63. 63.
    Kisseleva T, Brenner DA (2011) Anti-fibrogenic strategies and the regression of fibrosis. Best Pract Res Clin Gastroenterol 25:305–317PubMedCrossRefGoogle Scholar
  64. 64.
    Seet BT, McCaughan CA, Handel TM, Mercer AA, Brunetti C, McFadden G, Fleming SB (2003) Analysis of an orf virus chemokine-binding protein: shifting ligand specificities among a family of poxvirus viroceptors. Proc Natl Acad Sci U S A 100:15137–15142PubMedCrossRefGoogle Scholar
  65. 65.
    Ogawa S, Oku A, Sawano A, Yamaguchi S, Yazaki Y, Shibuya M (1998) A novel type of vascular endothelial growth factor, VEGF-E (NZ-7 VEGF), preferentially utilizes KDR/Flk-1 receptor and carries a potent mitotic activity without heparin-binding domain. J Biol Chem 273:31273–31282PubMedCrossRefGoogle Scholar
  66. 66.
    Meyer M, Clauss M, Lepple-Wienhues A, Waltenberger J, Augustin HG, Ziche M, Lanz C, Büttner M, Rziha HJ, Dehio C (1999) A novel vascular endothelial growth factor encoded by Orf virus, VEGF-E, mediates angiogenesis via signalling through VEGFR-2 (KDR) but not VEGFR-1 (Flt-1) receptor tyrosine kinase. EMBO J 18:363–374PubMedCrossRefGoogle Scholar
  67. 67.
    Wise LM, Veikkola T, Mercer AA, Savory LJ, Fleming SB, Caesar C, Vitali A, Makinen T, Alitalo K, Stacker SA (1999) Vascular endothelial growth factor (VEGF)-like protein from orf virus NZ2 binds to VEGFR2 and neuropilin-1. Proc Natl Acad Sci U S A 96:3071–3076PubMedCrossRefGoogle Scholar
  68. 68.
    McInnes CJ, Wood AR, Mercer AA (1998) Orf virus encodes a homolog of the vaccinia virus interferon-resistance gene E3L. Virus Genes 17:107–115PubMedCrossRefGoogle Scholar
  69. 69.
    Westphal D, Ledgerwood EC, Hibma MH, Fleming SB, Whelan EM, Mercer AA (2007) A novel Bcl-2-like inhibitor of apoptosis is encoded by the Parapoxvirus ORF virus. J Virol 81:7178–7188PubMedCrossRefGoogle Scholar
  70. 70.
    Mercer AA, Fleming SB, Ueda N (2005) F-box-like domains are present in most poxvirus ankyrin repeat proteins. Virus Genes 31:127–133PubMedCrossRefGoogle Scholar
  71. 71.
    Camus-Bouclainville C, Fiette L, Bouchiha S, Pignolet B, Counor D, Filipe C, Gelfi J, Messud-Petit F (2004) A virulence factor of myxoma virus colocalizes with NF-kappaB in the nucleus and interferes with inflammation. J Virol 78:2510–2516PubMedCrossRefGoogle Scholar
  72. 72.
    Johnston JB, Wang G, Barrett JW, Nazarian SH, Colwill K, Moran M, McFadden G (2005) Myxoma virus M-T5 protects infected cells from the stress of cell cycle arrest through its interaction with host cell cullin-1. J Virol 79:10750–10763PubMedCrossRefGoogle Scholar
  73. 73.
    Diel DG, Delhon G, Luo S, Flores EF, Rock DL (2010) A novel inhibitor of the NF-κB signaling pathway encoded by the Parapoxvirus orf virus. J Virol 84:3962–3973PubMedCrossRefGoogle Scholar
  74. 74.
    Diel DG, Luo S, Delhon G, Peng Y, Flores EF, Rock DL (2011) A nuclear inhibitor of NF-kB encoded by a poxvirus. J Virol 85:264–275PubMedCrossRefGoogle Scholar
  75. 75.
    Diel DG, Luo S, Delhon G, Peng Y, Flores EF, Rock DL (2011) Orf virus ORFV121 encodes a novel inhibitor of NF-kB that contributes to virus virulence. J Virol 85:2037–2049PubMedCrossRefGoogle Scholar
  76. 76.
    Steinmassl M, Wolf G (1990) Bildung von Interleukin 2 und Interferon-α durch mononukleäre Leukozyten des Schweines nach in vitro-Stimulation mit verschiedenen Viruspräüaraten. Zentralbl Veterinarmed B 37:321–331PubMedGoogle Scholar
  77. 77.
    Förster RJ, Wolf G (1990) Phagocytosis of opsonized fluorescent microspheres by equine polymorphonuclear leukocytes. Zentralbl Veterinarmed B 37:481–490Google Scholar
  78. 78.
    Förster R, Wolf G, Mayr A (1994) Highly attenuated poxviruses induce functional priming of neutrophils in vitro. Arch Virol 136:219–226PubMedCrossRefGoogle Scholar
  79. 79.
    Mayr A, Büttner M, Pawlas S, Erfle V, Mayr B, Brunner R, Osterkorn K (1986) Vergleichende Untersuchungen über die immunstimulierende (paramunisierende) Wirksamkeit von BCG, Levamisol, Corynebakterium parvum, und Präparaten aus Pockenviren in verschiedenen in vivo- und vitro-Testen. Zentralbl Veterinarmed B 33:321–339PubMedGoogle Scholar
  80. 80.
    Vilsmeier B (1995) Entwicklung eines Zellkultur-Challenge-Tests zum Nachweis paramunisierender Aktivitäten verschiedener Präparationen aus Pockenviren. Thesis, MünchenGoogle Scholar
  81. 81.
    Mayr A (1987) Untersuchungen über die paraspezifische Wirkung von Pockenviren. Drug Res 37:988Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • O. Weber
    • 1
    • 6
  • A. A. Mercer
    • 2
  • A. Friebe
    • 3
  • P. Knolle
    • 4
  • H.-D. Volk
    • 5
  1. 1.Bayer HealthCare AGLeverkusenGermany
  2. 2.Department of Microbiology and ImmunologyUniversity of OtagoDunedinNew Zealand
  3. 3.LWL University HospitalRuhr University BochumBochumGermany
  4. 4.Institute of Molecular Medicine and Experimental ImmunologyUniversity Hospital BonnBonnGermany
  5. 5.Institute of Medical Immunology and Berlin-Brandenburg Center for Regenerative Therapies (BCRT)Charité—Medical University BerlinBerlinGermany
  6. 6.Bayer Pharmaceuticals Global Drug DiscoveryBayer HealthCare AGWuppertalGermany

Personalised recommendations