Pandemism of swine flu and its prospective drug therapy



Swine flu is a respiratory disease caused by influenza A H1N1 virus. The current pandemic of swine flu is most probably due to a mutation—more specifically, a re-assortment of four known strains of influenza A virus subtype H1N1. Antigenic variation of influenza viruses while circulating in the population is an important factor leading to difficulties in controlling influenza by vaccination. Due to the global effect of swine flu and its effect on humans, extensive investigations are being undertaken. In this context, Tamiflu is the only available drug used in the prophylaxis of this disease and is made from the compound shikimic acid. Due to the sudden increase in the demand of shikimic acid, its price has increased greatly. Thus, it is necessary to find an alternative approach for the treatment of swine flu. This review presents the overall information of swine flu, beginning from its emergence to the prevention and treatment of the disease, with a major emphasis on the alternative approach (bacterial fermentation process) for the treatment of swine flu. The alternative approach for the treatment of swine flu includes the production of shikimic acid from a fermentation process and it can be produced in large quantities without any time limitations.


  1. 1.
    Lagacé-Wiens PRS, Rubinstein E, Gumel A (2010) Influenza epidemiology—past, present, and future. Crit Care Med 38(4):e1–e9PubMedGoogle Scholar
  2. 2.
    Avian influenza, Wikipedia page.Available online at:
  3. 3.
    Racaniello V (2009) Structure of influenza virus. Available online at:
  4. 4.
    Beigel J, Bray M (2008) Current and future antiviral therapy of severe seasonal and avian influenza. Antiviral Res 78(1):91–102PubMedPubMedCentralGoogle Scholar
  5. 5.
    Wright PF, Webster RG (2001) Orthomyxoviruses. In: Knipe DM, Howley PM (eds) Fields virology, 4th edn. Lippincott Williams & Wilkins, Philadelphia, pp 1533–1579Google Scholar
  6. 6.
    Cox NJ, Subbarao K (2000) Global epidemiology of influenza: past and present. Ann Rev Med 51:407–421. doi:10.1146/ PubMedGoogle Scholar
  7. 7.
    Treanor JJ (2005) Influenza virus. In: Mandell GL, Bennett JE, Dolen R (eds) Principles and practice of infectious diseases, 6th edn. Churchill Livingstone, PhiladelphiaGoogle Scholar
  8. 8.
    Knobler SL, Mack A, Mahmoud A, Lemon SM (2005) The threat of pandemic influenza: are we ready? The National Academies Press, Washington DC, pp 60–61Google Scholar
  9. 9.
    Patterson KD, Pyle GF (1991) The geography and mortality of the 1918 influenza pandemic. Bull Hist Med 65:4–21PubMedGoogle Scholar
  10. 10.
    Taubenberger JK, Morens DM (2006) 1918 Influenza: the mother of all pandemics. Emerg Infect Dis 12:15–22PubMedPubMedCentralGoogle Scholar
  11. 11.
    Simonsen L, Clarke MJ, Schonberger LB, Arden NH, Cox NJ, Fukuda K (1998) Pandemic versus epidemic influenza mortality: a pattern of changing age distribution. J Infect Dis 178:53–60PubMedGoogle Scholar
  12. 12.
    Calisher CH (2009) Swine flu. Croat Med J 50(4):412–415PubMedPubMedCentralGoogle Scholar
  13. 13.
    George C (2009) Schools revamp swine flu plans for fall. Houston Chronicle. Available online at:
  14. 14.
    Luke CJ, Subbarao K (2006) Vaccines for pandemic influenza. Emerg Infect Dis 12:66–72PubMedPubMedCentralGoogle Scholar
  15. 15.
    Juckett G (2006) Avian influenza: preparing for a pandemic. Am Fam Physician 74(5):783–790PubMedGoogle Scholar
  16. 16.
    King JC Jr (2009) The ABC’s of H1N1. The New York Times. Available online at:
  17. 17.
    Riedel S (2006) Crossing the species barrier: the threat of an avian influenza pandemic. Proc (Bayl Univ Med Cent) 19:16–20Google Scholar
  18. 18.
    Potter CW (2001) A history of influenza. J Appl Microbiol 91(4):572–579PubMedGoogle Scholar
  19. 19.
    Hilleman MR (2002) Realities and enigmas of human viral influenza: pathogenesis, epidemiology and control. Vaccine 20:3068–3087PubMedGoogle Scholar
  20. 20.
    World Health Organization (WHO) report (2005) Ten things you need to know about pandemic influenza. Available online at:
  21. 21.
    Palese P (2004) Influenza: old and new threats. Nat Med 10(12 Suppl):S82–S87. doi:10.1038/nm1141 PubMedGoogle Scholar
  22. 22.
    Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, Griffin J, Baggaley RF, Jenkins HE, Lyons EJ, Jombart T, Hinsley WR, Grassly NC, Balloux F, Ghani AC, Ferguson NM, Rambaut A, Pybus OG, Lopez-Gatell H, Alpuche-Aranda CM, Chapela IB, Zavala EP, Guevara DM, Checchi F, Garcia E, Hugonnet S, Roth C; WHO Rapid Pandemic Assessment Collaboration (2009) Pandemic potential of a strain of influenza A (H1N1): early findings. Science 324:1557–1561. doi:10.1126/science.1176062 PubMedPubMedCentralGoogle Scholar
  23. 23.
    World Health Organization (WHO) (2009) Tables on the clinical trials of pandemic influenza prototype vaccines. Available online at:
  24. 24.
    Shinde V, Bridges CB, Uyeki TM, Shu B, Balish A, Xu X, Lindstrom S, Gubareva LV, Deyde V, Garten RJ, Harris M, Gerber S, Vagasky S, Smith F, Pascoe N, Martin K, Dufficy D, Ritger K, Conover C, Quinlisk P, Klimov A, Bresee JS, Finelli L (2009) Triple-reassortant swine influenza A (H1) in humans in the United States, 2005–2009. N Engl J Med 360:2616–2625PubMedGoogle Scholar
  25. 25.
    Munster VJ, de Wit E, van den Brand JMA, Herfst S, Schrauwen EJA, Bestebroer TM, van de Vijver D, Boucher CA, Koopmans M, Rimmelzwaan GF, Kuiken T, Osterhaus ADME, Fouchier RAM (2009) Pathogenesis and transmission of swine-origin 2009 A(H1N1) influenza virus in ferrets. Science 325:481–483. doi:10.1126/science.1177127 PubMedGoogle Scholar
  26. 26.
    Stobbe M (2009) US swine flu cases may have hit 1 million. The Huffington Post. Available online at:
  27. 27.
    Garten RJ, Davis CT, Russell CA, Shu B, Lindstrom S, Balish A, Sessions WM, Xu X, Skepner E, Deyde V, Okomo-Adhiambo M, Gubareva L, Barnes J, Smith CB, Emery SL, Hillman MJ, Rivailler P, Smagala J, de Graaf M, Burke DF, Fouchier RAM, Pappas C, Alpuche-Aranda CM, López-Gatell H, Olivera H, López I, Myers CA, Faix D, Blair PJ, Yu C, Keene KM, Dotson PD Jr, Boxrud D, Sambol AR, Abid SH, St. George K, Bannerman T, Moore AL, Stringer DJ, Blevins P, Demmler-Harrison GJ, Ginsberg M, Kriner P, Waterman S, Smole S, Guevara HF, Belongia EA, Clark PA, Beatrice ST, Donis R, Katz J, Finelli L, Bridges CB, Shaw M, Jernigan DB, Uyeki TM, Smith DJ, Klimov AI, Cox NJ (2009) Antigenic and genetic characteristics of swine-origin 2009 A(H1N1) Influenza viruses circulating in humans. Science 325:197–201PubMedPubMedCentralGoogle Scholar
  28. 28.
    Cheng M (2009) Healthy people who get swine flu don’t need Tamiflu; drug for young, old, pregnant. Washington Examiner. Available online at:
  29. 29.
    Cox NJ, Bender CA (1994) The molecular epidemiology of influenza viruses. Semin Virol 6:359–370Google Scholar
  30. 30.
    Zhou NN, Senne DA, Landgraf JS, Swenson SL, Erickson G, Rossow K, Liu L, Yoon K, Krauss S, Webster RG (1999) Genetic reassortment of avian, swine, and human influenza A viruses in American pigs. J Virol 73:8851–8856PubMedPubMedCentralGoogle Scholar
  31. 31.
    Gramer M, Rossow K (2004) Epidemiology of swine influenza and implications of reassortment. Allen D Leman Conference, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota, pp 69–73Google Scholar
  32. 32.
    Gramer M (2006) Swine influenza virus: the only constant is change. Allen D Leman Conference, University of Minnesota College of Veterinary Medicine, St. Paul, Minnesota pp 61–63Google Scholar
  33. 33.
    Scholtissek C (1990) Pigs as the ‘mixing vessel’ for the creation of new pandemic influenza A viruses. Med Princ Pract 2:65–71Google Scholar
  34. 34.
    Ito T, Couceiro JNSS, Kelm S, Baum LG, Krauss S, Castrucci MR, Donatelli I, Kida H, Paulson JC, Webster RG, Kawaoka Y (1998) Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J Virol 72:7367–7373PubMedPubMedCentralGoogle Scholar
  35. 35.
    MacKenzie D (2009) Deadly new flu virus in US and Mexico may go pandemic. Available online at:
  36. 36.
    Vincent AL, Ma W, Lager KM, Janke BH, Richt JA (2008) Swine influenza viruses: a North American perspective. Adv Virus Res 72:127–154PubMedGoogle Scholar
  37. 37.
    Trifonov V, Khiabanian H, Greenbaum B, Rabadan R (2009) The origin of the recent swine influenza A(H1N1) virus infecting humans. Euro Surveill 14. pii: 19193Google Scholar
  38. 38.
    Klenk HD, Matrosovich M, Stech J (2008) Avian Influenza: molecular mechanisms of pathogenesis and host range. In: Mettenleiter TC, Sobrino F (eds) Molecular biology of animal viruses. Caister Academic Press, Wymondham, pp 253–303. ISBN 978-1-904455-22-6Google Scholar
  39. 39.
    Kawaoka Y (ed) (2006) Influenza virology: current topics. Caister Academic Press, Wymondham. ISBN 978-1-904455-06-6Google Scholar
  40. 40.
    Fauquet CM, Fargette D (2005) International Committee on Taxonomy of Viruses and the 3,142 unassigned species. Virol J 2:64. doi:10.1186/1743-422X-2-64 PubMedPubMedCentralGoogle Scholar
  41. 41.
    Lamb RA, Choppin PW (1983) The gene structure and replication of influenza virus. Ann Rev Biochem 52:467–506PubMedGoogle Scholar
  42. 42.
    Bouvier NM, Palese P (2008) The biology of influenza viruses. Vaccine 26:D49–D53PubMedPubMedCentralGoogle Scholar
  43. 43.
    Ghedin E, Sengamalay NA, Shumway M, Zaborsky J, Feldblyum T, Subbu V, Spiro DJ, Sitz J, Koo H, Bolotov P, Dernovoy D, Tatusova T, Bao Y, St George K, Taylor J, Lipman DJ, Fraser CM, Taubenberger JK, Salzberg SL (2005) Large-scale sequencing of human influenza reveals the dynamic nature of viral genome evolution. Nature 437:1162–1166. doi:10.1038/nature04239 PubMedGoogle Scholar
  44. 44.
    Büchen-Osmond C (ed) (2006) “ICTVdB Virus Description— Influenzavirus B”. ICTVdB—The Universal Virus Database, version 4. Columbia University, New YorkGoogle Scholar
  45. 45.
    Guo YJ, Jin FG, Wang P, Wang M, Zhu JM (1983) Isolation of influenza C virus from pigs and experimental infection of pigs with influenza C virus. J Gen Virol 64:177–182PubMedGoogle Scholar
  46. 46.
    Suzuki Y (2005) Sialobiology of influenza: molecular mechanism of host range variation of influenza viruses. Biol Pharm Bull 28:399–408PubMedGoogle Scholar
  47. 47.
    Wilson JC, von Itzstein M (2003) Recent strategies in the search for new anti-influenza therapies. Curr Drug Targets 4:389–408PubMedGoogle Scholar
  48. 48.
    Lynch JP 3rd, Walsh EE (2007) Influenza: evolving strategies in treatment and prevention. Semin Respir Crit Care Med 28(2):144–158PubMedGoogle Scholar
  49. 49.
    Laver WG, Webster RG (1972) Studies on the origin of pandemic influenza. II. Peptide maps of the light and heavy polypeptide chains from the hemagglutinin subunits of A 2 influenza viruses isolated before and after the appearance of Hong Kong influenza. Virology 48:445–455PubMedGoogle Scholar
  50. 50.
    Webster RG, Laver WG (1975) Antigenic variation of influenza viruses. In: Kilbourne ED (ed) The influenza viruses and influenza. Academic Press, New York, pp 269–314Google Scholar
  51. 51.
    Laver WG, Webster RG (1979) Ecology of influenza viruses in lower mammals and birds. Br Med Bull 35:29–33PubMedGoogle Scholar
  52. 52.
    Young JF, Palese P (1979) Evolution of human influenza A viruses in nature: recombination contributes to genetic variation of H1N1 strains. Proc Natl Acad Sci USA 76:6547–6551PubMedPubMedCentralGoogle Scholar
  53. 53.
    Bean WJ Jr, Cox NJ, Kendal AP (1980) Recombination of human influenza A viruses in nature. Nature 284:638–640PubMedGoogle Scholar
  54. 54.
    Hinshaw VS, Bean WJ, Webster RG, Sriram G (1980) Genetic reassortment of influenza A viruses in the intestinal tract of ducks. Virology 102:412–419PubMedGoogle Scholar
  55. 55.
    Ma W, Vincent AL, Gramer MR, Brockwell CB, Lager KM, Janke BH, Gauger PC, Patnayak DP, Webby RJ, Richt JA (2007) Identification of H2N3 influenza A viruses from swine in the United States. Proc Natl Acad Sci USA 104:20949–20954PubMedPubMedCentralGoogle Scholar
  56. 56.
    Kilbourne ED (1975) Epidemiology of influenza. In: Kilbourne ED (ed) The influenza viruses and influenza. Academic Press, New York, pp 483–532Google Scholar
  57. 57.
    Kendal AP, Noble GR, Skehel JJ, Dowdle WR (1978) Antigenic similarity of influenza A (H1N1) viruses from epidemics in 1977–1978 to “Scandinavian” strains isolated in epidemics of 1950–1951. Virology 89:632–636PubMedGoogle Scholar
  58. 58.
    Zhdanov VM, Lvov DK, Zakstelskaya LY, Yakhno MA, Isachenko VI, Braude NA, Reznik VI, Pysina TV, Andreyev VP, Podchernyaeva RY (1978) Return of epidemic A1 (H1N1) influenza virus. Lancet 1:294–295PubMedGoogle Scholar
  59. 59.
    Scholtissek C, Rohde W, von Hoyningen V, Rott R (1978) On the origin of the human influenza virus subtypes H2N2 and H3N2. Virology 87:13–20PubMedGoogle Scholar
  60. 60.
    Nakajima K, Desselberger U, Palese P (1978) Recent human influenza A (H1N1) viruses are closely related genetically to strains isolated in 1950. Nature 274:334–339PubMedGoogle Scholar
  61. 61.
    Scholtissek C (1980) Evolution of pandemic influenza virus strains. Philos Trans R Soc Lond B Biol Sci 288(1029):307–312PubMedGoogle Scholar
  62. 62.
    University of Wisconsin River Falls. Influenza background. Available online at:
  63. 63.
    Hay AJ, Gregory V, Douglas AR, Lin YP (2001) The evolution of human influenza viruses. Philos Trans R Soc Lond B Biol Sci 356:1861–1870. doi:10.1098/rstb.2001.0999 PubMedPubMedCentralGoogle Scholar
  64. 64.
    Wolf Yi, Viboud C, Holmes EC, Koonin EV, Lipman DJ (2006) Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus. Biol Direct 1:34–53PubMedPubMedCentralGoogle Scholar
  65. 65.
    Parrish CR, Kawaoka Y (2005) The origins of new pandemic viruses: the acquisition of new host ranges by canine parvovirus and influenza A viruses. Ann Rev Microbiol 59:553–586. doi:10.1146/annurev.micro.59.030804.121059 Google Scholar
  66. 66.
    Recker M, Pybus OG, Nee S, Gupta S (2007) The generation of influenza outbreaks by a network of host immune responses against a limited set of antigenic types. Proc Natl Acad Sci USA 104(18):7711–7716PubMedPubMedCentralGoogle Scholar
  67. 67.
    Richman DD, Murphy BR (1979) The association of the temperature-sensitive phenotype with viral attenuation in animals and humans: implications for the development and use of live virus vaccines. Rev Infect Dis 1:413–433PubMedGoogle Scholar
  68. 68.
    May RM, Anderson RM (1983) Epidemiology and genetics in the coevolution of parasites and hosts. Proc R Soc Lond Biol Sci 219:281–313Google Scholar
  69. 69.
    Wright PF, Thompson J, Karzon DT (1980) Differing virulence of H1N1 and H3N2 influenza strains. Am J Epidemiol 112:814–819PubMedGoogle Scholar
  70. 70.
    Nesse RM, Williams GC (2009) Why we get sick: the new science of Darwinian medicine. Times Books, New YorkGoogle Scholar
  71. 71.
    Gallaher WR (2009) Towards a sane and rational approach to management of influenza H1N1 2009. Virol J 6:51. doi:10.1186/1743-422X-6-51 PubMedPubMedCentralGoogle Scholar
  72. 72.
    Shinde V, Bridges CB, Uyeki TM, Shu B, Balish A, Xu X, Lindstrom S, Gubareva LV, Deyde V, Garten RJ, Harris M, Gerber S, Vagasky S, Smith F, Pascoe N, Martin K, Dufficy D, Ritger K, Conover C, Quinlisk P, Klimov A, Bresee JS, Finelli L (2009) Triple-reassortant swine influenza A (H1) in humans in the United States, 2005–2009. N Engl J Med 360:2616–2625PubMedGoogle Scholar
  73. 73.
    Sabharwal AD, Sandhu BS, Singh B (2009) Investigations of effect of target thickness and detector collimation on 662 keV multiply backscattered gamma photons. Radiat Meas 44:411–414Google Scholar
  74. 74.
    McKinney WP, Volkert P, Kaufman J (1990) Fatal swine influenza pneumonia during late pregnancy. Arch Intern Med 150:213–215PubMedGoogle Scholar
  75. 75.
    Cheng PKC, Leung TWC, Ho ECM, Leung PKC, Ng AYY, Lai MYY, Lim WWL (2009) Oseltamivir- and amantadine-resistant influenza viruses A (H1N1). Emerg Infect Dis 15:966–968. doi:10.3201/eid1506.081357 PubMedPubMedCentralGoogle Scholar
  76. 76.
    Lee CW, Koh CW, Chan YS, Aw PP, Loh KH, Han BL, Thien PL, Nai GY, Hibberd ML, Wong CW, Sung WK (2010) Large-scale evolutionary surveillance of the 2009 H1N1 influenza A virus using resequencing arrays. Nucleic Acids Res 38(9):e111. doi:10.1093/nar/gkq089
  77. 77.
    Tandon VR, Mahajan A, Sharma S, Gupta SK, Kumar D, Sharma Y (2009) Swine flu (H1N1)—Pandemic or bioterrorism. JK Sci 11(4):161–162Google Scholar
  78. 78.
    Grassly NC, Fraser C (2008) Mathematical models of infectious disease transmission. Nat Rev Microbiol 6(6):477–487. doi:10.1038/nrmicro1845 PubMedGoogle Scholar
  79. 79.
    Hall CB (2007) The spread of influenza and other respiratory viruses: complexities and conjectures. Clin Infect Dis 45(3):353–359. doi:10.1086/519433 PubMedGoogle Scholar
  80. 80.
    Weber TP, Stilianakis NI (2008) Inactivation of influenza A viruses in the environment and modes of transmission: a critical review. J Infect 57(5):361–373. doi:10.1016/j.jinf.2008.08.013 PubMedGoogle Scholar
  81. 81.
    Cole EC, Cook CE (1998) Characterization of infectious aerosols in health care facilities: an aid to effective engineering controls and preventive strategies. Am J Infect Control 26(4):453–464PubMedGoogle Scholar
  82. 82.
    Thomas Y, Vogel G, Wunderli W, Suter P, Witschi M, Koch D, Tapparel C, Kaiser L (2008) Survival of influenza virus on banknotes. Appl Environ Microbiol 74(10):3002–3007. doi:10.1128/AEM.00076-08 PubMedPubMedCentralGoogle Scholar
  83. 83.
    Bean B, Moore BM, Sterner B, Peterson LR, Gerding DN, Balfour HH Jr (1982) Survival of influenza viruses on environmental surfaces. J Infect Dis 146(1):47–51PubMedGoogle Scholar
  84. 84.
    Tellier R (2006) Review of aerosol transmission of influenza A virus. Emerg Infect Dis 12(11):1657–1662PubMedPubMedCentralGoogle Scholar
  85. 85.
    Brankston G, Gitterman L, Hirji Z, Lemieux C, Gardam M (2007) Transmission of influenza A in human beings. Lancet Infect Dis 7(4):257–265PubMedGoogle Scholar
  86. 86.
    Carrat F, Luong J, Lao H, Sallé AV, Lajaunie C, Wackernagel H (2006) A ‘small-world-like’ model for comparing interventions aimed at preventing and controlling influenza pandemics. BMC Med 4:26. doi:10.1186/1741-7015-4-26 PubMedPubMedCentralGoogle Scholar
  87. 87.
    Mitamura K, Sugaya N (2006) Diagnosis and treatment of influenza—clinical investigation on viral shedding in children with influenza. Uirusu 56(1):109–116PubMedGoogle Scholar
  88. 88.
    Grayson ML, Melvani S, Druce J, Barr IG, Ballard SA, Johnson PD, Mastorakos T, Birch C (2009) Efficacy of soap and water and alcohol-based hand-rub preparations against live H1N1 influenza virus on the hands of human volunteers. Clin Infect Dis 48:285–291PubMedGoogle Scholar
  89. 89.
    Aledort JE, Lurie N, Wasserman J, Bozzette SA (2007) Non-pharmaceutical public health interventions for pandemic influenza: an evaluation of the evidence base. BMC Public Health 7:208–216PubMedPubMedCentralGoogle Scholar
  90. 90.
    Bridges CB, Kuehnert MJ, Hall CB (2003) Transmission of influenza: implications for control in health care settings. Clin Infect Dis 37(8):1094–1101PubMedGoogle Scholar
  91. 91.
    MacIntyre CR, Cauchemez S, Dwyer DE, Seale H, Cheung P, Browne G, Fasher M, Wood J, Gao Z, Booy R, Ferguson N (2009) Face mask use and control of respiratory virus transmission in households. Emerg Infect Dis 15(2):233–241PubMedPubMedCentralGoogle Scholar
  92. 92.
    Finklea JF, Sandifer SH, Smith DD (1969) Cigarette smoking and epidemic influenza. Am J Epidemiol 90(5):390–399PubMedGoogle Scholar
  93. 93.
    Kark JD, Lebiush M (1981) Smoking and epidemic influenza-like illness in female military recruits: a brief survey. Am J Public Health 71(5):530–532PubMedPubMedCentralGoogle Scholar
  94. 94.
    Kark JD, Lebiush M, Rannon L (1982) Cigarette smoking as a risk factor for epidemic a(h1n1) influenza in young men. N Engl J Med 307(17):1042–1046PubMedGoogle Scholar
  95. 95.
    Murin S, Bilello KS (2005) Respiratory tract infections: another reason not to smoke. Cleve Clin J Med 72(10):916–920PubMedGoogle Scholar
  96. 96.
    Hota B (2004) Contamination, disinfection, and cross-colonization: are hospital surfaces reservoirs for nosocomial infection? Clin Infect Dis 39(8):1182–1189PubMedGoogle Scholar
  97. 97.
    McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179PubMedPubMedCentralGoogle Scholar
  98. 98.
    Bootsma MC, Ferguson NM (2007) The effect of public health measures on the 1918 influenza pandemic in U.S. cities. Proc Natl Acad Sci USA 104(18):7588–7593PubMedPubMedCentralGoogle Scholar
  99. 99.
    Hatchett RJ, Mecher CE, Lipsitch M (2007) Public health interventions and epidemic intensity during the 1918 influenza pandemic. Proc Natl Acad Sci USA 104(18):7582–7587PubMedPubMedCentralGoogle Scholar
  100. 100.
    Hoyt K (2006) Vaccine innovation: lessons from World War II. J Public Health Policy 27(1):38–57PubMedGoogle Scholar
  101. 101.
    Legrand N, Weijer K, Spits H (2006) Experimental models to study development and function of the human immune system in vivo. J Immunol 176:2053–2058PubMedGoogle Scholar
  102. 102.
    Skowronski DM, Masaro C, Kwindt TL, Mak A, Petric M, Li Y, Sebastian R, Chong M, Tam T, De Serres G (2007) Estimating vaccine effectiveness against laboratory-confirmed influenza using a sentinel physician network: results from the 2005–2006 season of dual A and B vaccine mismatch in Canada. Vaccine 25:2842–2851PubMedGoogle Scholar
  103. 103.
    World Health Organization (WHO) report (2006) Recommended composition of influenza virus vaccines for use in the 2006–2007 influenza season. Available online at:
  104. 104.
    Capua I, Alexander DJ (2006) The challenge of avian influenza to the veterinary community. Avian Pathol 35(3):189–205PubMedGoogle Scholar
  105. 105.
    Holmes EC, Ghedin E, Miller N, Taylor J, Bao Y, St George K, Grenfell BT, Salzberg SL, Fraser CM, Lipman DJ, Taubenberger JK (2005) Whole-genome analysis of human influenza A virus reveals multiple persistent lineages and reassortment among recent H3N2 viruses. PLoS Biol 3(9):e300PubMedPubMedCentralGoogle Scholar
  106. 106.
    Centers for Disease Control and Prevention (CDC) publication (2006) Key facts about influenza (flu) and flu vaccine. Available online at:
  107. 107.
    Centers for Disease Control and Prevention (CDC) report (2006) Prevention and control of influenza: recommendations of the advisory committee on immunization practices (ACIP). Available online at:
  108. 108.
    U.S. Food and Drug Administration (FDA) (2009) FDA approves vaccines for 2009 H1N1 influenza virus. Approval provides important tool to fight pandemic. Available online at:
  109. 109.
    Glasgow JF, Middleton B (2001) Reye syndrome—insights on causation and prognosis. Arch Dis Child 85(5):351–353PubMedPubMedCentralGoogle Scholar
  110. 110.
    Hurt AC, Ho HT, Barr I (2006) Resistance to anti-influenza drugs: adamantanes and neuraminidase inhibitors. Expert Rev Anti Infect Ther 4(5):795–805PubMedGoogle Scholar
  111. 111.
    Kumar DS, Banji D, Rajashekar K, Rahul CH, Kranthi A, Verma MA, Ajaykumar P, Krishnachaitanya CH (2010) Drug therapy for swine flu—an overview. Int J Pharm Bio Sci 1(1):1–9Google Scholar
  112. 112.
    Moscona A (2005) Neuraminidase inhibitors for influenza. N Engl J Med 353:1363–1373PubMedGoogle Scholar
  113. 113.
    Stephenson I, Nicholson KG (1999) Chemotherapeutic control of influenza. J Antimicrob Chemother 44(1):6–10PubMedGoogle Scholar
  114. 114.
    Webster RG, Govorkova EA (2006) H5N1 influenza—continuing evolution and spread. N Engl J Med 355(21):2174–2177PubMedGoogle Scholar
  115. 115.
    Ward P, Small I, Smith J, Suter P, Dutkowski R (2005) Oseltamivir (Tamiflu) and its potential for use in the event of an influenza pandemic. J Antimicrob Chemother 55(Suppl 1):i5–i21. doi:10.1093/jac/dki018 PubMedGoogle Scholar
  116. 116.
    Lew W, Chen X, Kim CU (2000) Discovery and development of GS 4104 (oseltamivir): an orally active influenza neuraminidase inhibitor. Curr Med Chem 7(6):663–672PubMedGoogle Scholar
  117. 117.
    Waknine Y (2006) Tamiflu may be linked to risk for self-injury and delirium. Medscape. Available online at:
  118. 118.
    Cyranoski D (2005) Avian flu special: masking our ignorance. Nature 435(7041):408PubMedGoogle Scholar
  119. 119.
    Hayden FG (2001) Perspectives on antiviral use during pandemic influenza. Philos Trans R Soc Lond B Biol Sci 356(1416):1877–1884. doi:10.1098/rstb.2001.1007 PubMedPubMedCentralGoogle Scholar
  120. 120.
    Pinto LH, Lamb RA (2006) The M2 proton channels of influenza A and B viruses. J Biol Chem 281(14):8997–9000PubMedGoogle Scholar
  121. 121.
    Ilyushina NA, Govorkova EA, Webster RG (2005) Detection of amantadine-resistant variants among avian influenza viruses isolated in North America and Asia. Virology 341(1):102–106PubMedGoogle Scholar
  122. 122.
    Parry J (2005) Use of antiviral drug in poultry is blamed for drug resistant strains of avian flu. BMJ 331(7507):10PubMedPubMedCentralGoogle Scholar
  123. 123.
    Bright RA, Shay DK, Shu B, Cox NJ, Klimov AI (2006) Adamantane resistance among influenza A viruses isolated early during the 2005–2006 influenza season in the United States. JAMA 295(8):891–894PubMedGoogle Scholar
  124. 124.
    Maugh TH (1976) Amantadine: an alternative for prevention of influenza. Science 192(4235):130–131PubMedGoogle Scholar
  125. 125.
    Jing X, Ma C, Ohigashi Y, Oliveira FA, Jardetzky TS, Pinto LH, Lamb RA (2008) Functional studies indicate amantadine binds to the pore of the influenza A virus M2 proton-selective ion channel. Proc Natl Acad Sci USA 105(31):10967–10972PubMedPubMedCentralGoogle Scholar
  126. 126.
    Wang C, Takeuchi K, Pinto LH, Lamb RA (1993) Ion channel activity of influenza A virus M2 protein: characterization of the amantadine block. J Virol 67(9):5585–5594PubMedPubMedCentralGoogle Scholar
  127. 127.
    Govorkova EA, Fang HB, Tan M, Webster RG (2004) Neuraminidase inhibitor-rimantadine combinations exert additive and synergistic anti-influenza virus effects in MDCK cells. Antimicrob Agents Chemother 48(12):4855–4863PubMedPubMedCentralGoogle Scholar
  128. 128.
    Gibson MI, Gibson F, Doy CH, Morgan P (1962) The branchpoint in the synthesis of the aromatic amino acids. Nature 195:1173–1175Google Scholar
  129. 129.
    Tiedtke J (2006) Information requirements for botanical cosmetic ingredients. Cosmetic Science Technology, pp 15–21Google Scholar
  130. 130.
    Stavric B, Stoltz DR (1976) Shikimic acid. Food Cosmet Toxicol 14(2):141–145PubMedGoogle Scholar
  131. 131.
    Evans IA, Osman MA (1974) Carcinogenicity of bracken and shikimic acid. Nature 250:348–349PubMedGoogle Scholar
  132. 132.
    Kim CU, Lew W, Williams MA, Liu H, Zhang L, Swaminathan S, Bischofberger N, Chen MS, Mendel DB, Tai CY, Laver WG, Stevens RC (1997) Influenza neuraminidase inhibitors possessing a novel hydrophobic interaction in the enzyme active site: design, synthesis, and structural analysis of carbocyclic sialic acid analogues with potent anti-influenza activity. J Am Chem Soc 119:681–690PubMedGoogle Scholar
  133. 133.
    Rohloff JC, Kent KM, Postich MJ, Becker MW, Chapman HH, Kelly DE, Lew W, Louie MS, McGee LR, Prisbe EJ, Schultze LM, Yu RH, Zhang L (1998) Practical total synthesis of the anti-influenza drug GS-4104. J Org Chem 63(13):4545–4550Google Scholar
  134. 134.
    Bongaerts J, Krämer M, Müller U, Raeven L, Wubbolts M (2001) Metabolic engineering for microbial production of aromatic amino acids and derived compounds. Metab Eng 3:289–300PubMedGoogle Scholar
  135. 135.
    Krämer M, Bongaerts J, Bovenberg R, Kremer S, Müller U, Orf S, Wubbolts M, Raeven L (2003) Metabolic engineering for microbial production of shikimic acid. Metab Eng 5:277–283PubMedGoogle Scholar
  136. 136.
    Bradley D (2005) Star role for bacteria in controlling flu pandemic? Nat Rev Drug Discov 4(12):945–946PubMedGoogle Scholar
  137. 137.
    Draths KM, Knop DR, Frost JW (1999) Shikimic acid and quinic acid: replacing isolation from plant sources with recombinant microbial biocatalysis. J Am Chem Soc 121:1603–1604Google Scholar
  138. 138.
    Knop DR, Draths KM, Chandran SS, Barker JL, von Daeniken R, Weber W, Frost JW (2001) Hydroaromatic equilibration during biosynthesis of shikimic acid. J Am Chem Soc 123:10173–10182PubMedGoogle Scholar
  139. 139.
    Chandran SS, Yi J, Draths KM, von Daeniken R, Weber W, Frost JW (2003) Phosphoenolpyruvate availability and the biosynthesis of shikimic acid. Biotechnol Prog 19:808–814PubMedGoogle Scholar
  140. 140.
    Johansson L, Lindskog A, Silfversparre G, Cimander C, Nielsen KF, Lidén G (2005) Shikimic acid production by a modified strain of E. coli (W3110.shik1) under phosphate-limited and carbon-limited conditions. Biotechnol Bioeng 92:541–552PubMedGoogle Scholar
  141. 141.
    Knop M, Miller KJ, Mazza M, Feng D, Weber M, Keränen S, Jäntti J (2005) Molecular interactions position Mso1p, a novel PTB domain homologue, in the interface of the exocyst complex and the exocytic SNARE machinery in yeast. Mol Biol Cell 16:4543–4556PubMedPubMedCentralGoogle Scholar
  142. 142.
    Iomantas YAV, Abalakina EG, Polanuer BM, Yampolskaya TA, Bachina TA, Kozlov YI (2002) Method for producing shikimic acid. US patent no. 6436664Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of MicrobiologyUniversity of Delhi South CampusNew DelhiIndia

Personalised recommendations