Evaluation of a digital microfluidic real-time PCR platform to detect DNA of Candida albicans in blood

  • W. A. Schell
  • J. L. Benton
  • P. B. Smith
  • M. Poore
  • J. L. Rouse
  • D. J. Boles
  • M. D. Johnson
  • B. D. Alexander
  • V. K. Pamula
  • A. E. Eckhardt
  • M. G. Pollack
  • D. K. BenjaminJr
  • J. R. Perfect
  • T. G. MitchellEmail author


Species of Candida frequently cause life-threatening infections in neonates, transplant and intensive care unit (ICU) patients, and others with compromised host defenses. The successful management of systemic candidiasis depends upon early, rapid diagnosis. Blood cultures are the standard diagnostic method, but identification requires days and less than half of the patients are positive. These limitations may be eliminated by using real-time polymerase chain reaction (PCR) to detect Candida DNA in the blood specimens of patients at risk. Here, we optimized a PCR protocol to detect 5–10 yeasts in low volumes of simulated and clinical specimens. We also used a mouse model of systemic candidiasis and determined that candidemia is optimally detectable during the first few days after infection. However, PCR tests are often costly, labor-intensive, and inconvenient for routine use. To address these obstacles, we evaluated the innovative microfluidic real-time PCR platform (Advanced Liquid Logic, Inc.), which has the potential for full automation and rapid turnaround. Eleven and nine of 16 specimens from individual patients with culture-proven candidemia tested positive for C. albicans DNA by conventional and microfluidic real-time PCR, respectively, for a combined sensitivity of 94%. The microfluidic platform offers a significant technical advance in the detection of microbial DNA in clinical specimens.


Candidiasis Caspofungin Invasive Candidiasis Polymerase Chain Reaction Test Conventional Polymerase Chain Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Randy Jirtle and David Skaar for the use of their ABI 7900 real-time thermocycler and Alejandro Escalante-Flores for technical assistance. This project was supported by USA Public Health Service grants from the National Institutes of Health, U01 AI 066590 and K24 AI 072522 (B.D.A.).

Conflict of interest

Co-authors Benton, Poore, Rouse, Boles, V. K. Pamula, Eckhardt, and Pollack are employed by Advanced Liquid Logic, Inc. Co-authors Smith, Johnson, Alexander, Benjamin, Perfect, and Mitchell declare no conflict of interest. Co-author Schell has a small equity ownership in Advanced Liquid Logic, Inc.

Supplementary material

10096_2012_1561_MOESM1_ESM.doc (42 kb)
Online Resource 1 (DOC 42 kb)


  1. 1.
    Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163PubMedCrossRefGoogle Scholar
  2. 2.
    Martin GS, Mannino DM, Eaton S, Moss M (2003) The epidemiology of sepsis in the United States from 1979 through 2000. N Engl J Med 348:1546–1554PubMedCrossRefGoogle Scholar
  3. 3.
    Tortorano AM, Kibbler C, Pemán J, Bernhardt H, Klingspor L, Grillot R (2006) Candidaemia in Europe: epidemiology and resistance. Int J Antimicrob Agents 27:359–366PubMedCrossRefGoogle Scholar
  4. 4.
    Olaechea PM, Palomar M, León-Gil C, Alvarez-Lerma F, Jordá R, Nolla-Salas J, León-Regidor MA; EPCAN Study Group (2004) Economic impact of Candida colonization and Candida infection in the critically ill patient. Eur J Clin Microbiol Infect Dis 23:323–330PubMedCrossRefGoogle Scholar
  5. 5.
    Eggimann P, Bille J, Marchetti O (2011) Diagnosis of Invasive candidiasis in the ICU. Ann Intensive Care 1:37PubMedCrossRefGoogle Scholar
  6. 6.
    Benjamin DK Jr, Stoll BJ, Fanaroff AA, McDonald SA, Oh W, Higgins RD, Duara S, Poole K, Laptook A, Goldberg R; National Institute of Child Health and Human Development Neonatal Research Network (2006) Neonatal candidiasis among extremely low birth weight infants: risk factors, mortality rates, and neurodevelopmental outcomes at 18 to 22 months. Pediatrics 117:84–92PubMedCrossRefGoogle Scholar
  7. 7.
    Friedman S, Richardson SE, Jacobs SE, O’Brien K (2000) Systemic Candida infection in extremely low birth weight infants: short term morbidity and long term neurodevelopmental outcome. Pediatr Infect Dis J 19:499–504PubMedCrossRefGoogle Scholar
  8. 8.
    Pizzo PA, Robichaud KJ, Gill FA, Witebsky FG (1982) Empiric antibiotic and antifungal therapy for cancer patients with prolonged fever and granulocytopenia. Am J Med 72:101–111PubMedCrossRefGoogle Scholar
  9. 9.
    Mitchell TG, Verweij PE, Hoepelman AIM (2010) Opportunistic and systemic fungi. In: Cohen J, Powderly WG, Opal SM (eds) Infectious diseases, 3rd edn. Mosby Elsevier, London, pp 1823–1852Google Scholar
  10. 10.
    Avni T, Leibovici L, Paul M (2011) PCR diagnosis of invasive candidiasis: systematic review and meta-analysis. J Clin Microbiol 49:665–670PubMedCrossRefGoogle Scholar
  11. 11.
    Carvalho A, Costa-De-Oliveira S, Martins ML, Pina-Vaz C, Rodrigues AAG, Ludovico P, Rodrigues F (2007) Multiplex PCR identification of eight clinically relevant Candida species. Med Mycol 45:619–627PubMedCrossRefGoogle Scholar
  12. 12.
    Maaroufi Y, Heymans C, De Bruyne JM, Duchateau V, Rodriguez-Villalobos H, Aoun M, Crokaert F (2003) Rapid detection of Candida albicans in clinical blood samples by using a TaqMan-based PCR assay. J Clin Microbiol 41:3293–3298PubMedCrossRefGoogle Scholar
  13. 13.
    Chen Y-C, Eisner JD, Kattar MM, Rassoulian-Barrett SL, LaFe K, Yarfitz SL, Limaye AP, Cookson BT (2000) Identification of medically important yeasts using PCR-based detection of DNA sequence polymorphisms in the internal transcribed spacer 2 region of the rRNA genes. J Clin Microbiol 38:2302–2310PubMedGoogle Scholar
  14. 14.
    Hua Z, Rouse JL, Eckhardt AE, Srinivasan V, Pamula VK, Schell WA, Benton JL, Mitchell TG, Pollack MG (2010) Multiplexed real-time polymerase chain reaction on a digital microfluidic platform. Anal Chem 82:2310–2316PubMedCrossRefGoogle Scholar
  15. 15.
    Wulff-Burchfield E, Schell WA, Eckhardt AE, Pollack MG, Hua Z, Rouse JL, Pamula VK, Srinivasan V, Benton JL, Alexander BD, Wilfret DA, Kraft M, Cairns CB, Perfect JR, Mitchell TG (2010) Microfluidic platform versus conventional real-time polymerase chain reaction for the detection of Mycoplasma pneumoniae in respiratory specimens. Diagn Microbiol Infect Dis 67:22–29PubMedCrossRefGoogle Scholar
  16. 16.
    Pollack MG, Shenderov AD, Fair RB (2002) Electrowetting-based actuation of droplets for integrated microfluidics. Lab Chip 2:96–101PubMedCrossRefGoogle Scholar
  17. 17.
    Pollack MG, Fair RB, Shenderov AD (2000) Electrowetting-based actuation of liquid droplets for microfluidic applications. Appl Phys Lett 77:1725–1726CrossRefGoogle Scholar
  18. 18.
    Cowen LE, Singh SD, Köhler JR, Collins C, Zaas AK, Schell WA, Aziz H, Mylonakis E, Perfect JR, Whitesell L, Lindquist S (2009) Harnessing Hsp90 function as a powerful, broadly effective therapeutic strategy for fungal infectious disease. Proc Natl Acad Sci USA 106:2818–2823PubMedCrossRefGoogle Scholar
  19. 19.
    White PL, Perry MD, Loeffler J, Melchers WJG, Klingspor L, Bretagne S, McCulloch E, Cuenca-Estrella M, Finnstrom N, Donnelly JP, Barnes RA; European Aspergillus PCR Initiative (2010) Critical stages of extracting DNA from Aspergillus fumigatus in whole-blood specimens. J Clin Microbiol 48:3753–3755PubMedCrossRefGoogle Scholar
  20. 20.
    Hsu JL, Ruoss SJ, Bower ND, Lin M, Holodniy M, Stevens DA (2011) Diagnosing invasive fungal disease in critically ill patients. Crit Rev Microbiol 37:277–312PubMedCrossRefGoogle Scholar
  21. 21.
    White PL, Perry MD, Barnes RA (2009) An update on the molecular diagnosis of invasive fungal disease. FEMS Microbiol Lett 296:1–10PubMedCrossRefGoogle Scholar
  22. 22.
    McMullan R, Metwally L, Coyle PV, Hedderwick SA, McCloskey BV, O’Neill HJ, Patterson CC, Thompson G, Webb CH, Hay RJ (2008) A prospective clinical trial of a real-time polymerase chain reaction assay for the diagnosis of candidemia in nonneutropenic, critically ill adults. Clin Infect Dis 46:890–896PubMedCrossRefGoogle Scholar
  23. 23.
    Wellinghausen N, Siegel D, Winter J, Gebert S (2009) Rapid diagnosis of candidaemia by real-time PCR detection of Candida DNA in blood samples. J Med Microbiol 58:1106–1111PubMedCrossRefGoogle Scholar
  24. 24.
    Downey LC, Smith PB, Benjamin DK Jr, Cohen-Wolkowiez M (2010) Recent advances in the detection of neonatal candidiasis. Curr Fungal Infect Rep 4:17–22PubMedCrossRefGoogle Scholar
  25. 25.
    Khan ZU, Mustafa AS (2001) Detection of Candida species by polymerase chain reaction (PCR) in blood samples of experimentally infected mice and patients with suspected candidemia. Microbiol Res 156:95–102PubMedCrossRefGoogle Scholar
  26. 26.
    van Deventer AJM, Goessens WHF, van Belkum A, van Etten EWM, van Vliet HJA, Verbrugh HA (1996) PCR monitoring of response to liposomal amphotericin B treatment of systemic candidiasis in neutropenic mice. J Clin Microbiol 34:25–28PubMedGoogle Scholar
  27. 27.
    MacCallum DM, Odds FC (2005) Temporal events in the intravenous challenge model for experimental Candida albicans infections in female mice. Mycoses 48:151–161PubMedCrossRefGoogle Scholar
  28. 28.
    Pfeiffer CD, Samsa GP, Schell WA, Reller LB, Perfect JR, Alexander BD (2011) Quantitation of Candida CFU in initial positive blood cultures. J Clin Microbiol 49:2879–2883PubMedCrossRefGoogle Scholar
  29. 29.
    Bille JL, Stockman L, Roberts GD, Horstmeier CD, Ilstrup DM (1983) Evaluation of a lysis-centrifugation system for recovery of yeasts and filamentous fungi from blood. J Clin Microbiol 18:469–471PubMedGoogle Scholar
  30. 30.
    Telenti A, Steckelberg JM, Stockman L, Edson RS, Roberts GD (1991) Quantitative blood cultures in candidemia. Mayo Clin Proc 66:1120–1123PubMedGoogle Scholar
  31. 31.
    Sista RS, Hua Z, Thwar P, Sudarsan A, Srinivasan V, Eckhardt AE, Pollack MG, Pamula VK (2008) Development of a digital microfluidic platform for point of care testing. Lab Chip 8:2091–2104PubMedCrossRefGoogle Scholar
  32. 32.
    Srinivasan V, Pamula VK, Pollack MG, Fair RB (2003) Clinical diagnostics on human whole blood, plasma, serum, urine, saliva, sweat, and tears on a digital microfluidic platform. In: Proceedings of MicroTAS 2003, Squaw Valley, CA, October 2003, pp 1287–1290Google Scholar
  33. 33.
    Pollack MG, Pamula VK, Srinivasan V, Eckhardt AE (2011) Applications of electrowetting-based digital microfluidics in clinical diagnostics. Expert Rev Mol Diagn 11:393–407PubMedCrossRefGoogle Scholar
  34. 34.
    Sista RS, Eckhardt AE, Wang T, Graham C, Rouse JL, Norton SM, Srinivasan V, Pollack MG, Tolun AA, Bali D, Millington DS, Pamula VK (2011) Digital microfluidic platform for multiplexing enzyme assays: implications for lysosomal storage disease screening in newborns. Clin Chem 57:1444–1451PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  • W. A. Schell
    • 1
  • J. L. Benton
    • 5
  • P. B. Smith
    • 2
  • M. Poore
    • 5
  • J. L. Rouse
    • 5
  • D. J. Boles
    • 5
  • M. D. Johnson
    • 1
  • B. D. Alexander
    • 1
  • V. K. Pamula
    • 5
  • A. E. Eckhardt
    • 5
  • M. G. Pollack
    • 5
  • D. K. BenjaminJr
    • 3
  • J. R. Perfect
    • 1
  • T. G. Mitchell
    • 4
    Email author
  1. 1.Division of Infectious Diseases, Department of MedicineDuke University Medical CenterDurhamUSA
  2. 2.Division of Neonatology, Department of PediatricsDuke University Medical CenterDurhamUSA
  3. 3.Division of Quantitative Sciences, Department of PediatricsDuke University Medical CenterDurhamUSA
  4. 4.Department of Molecular Genetics and MicrobiologyDUMC 3803, Duke University Medical CenterDurhamUSA
  5. 5.Advanced Liquid Logic, Inc.Research Triangle ParkUSA

Personalised recommendations