Current status of food-borne trematode infections

Review

Abstract

Food-borne trematodiases constitute an important group of the most neglected tropical diseases, not only in terms of research funding, but also in the public media. The Trematoda class contains a great number of species that infect humans and are recognized as the causative agents of disease. The biological cycle, geographical distribution, and epidemiology of most of these trematode species have been well characterized. Traditionally, these infections were limited, for the most part, in populations living in low-income countries, particularly in Southeast Asia, and were associated with poverty. However, the geographical limits and the population at risk are currently expanding and changing in relation to factors such as growing international markets, improved transportation systems, and demographic changes. The diagnosis of these diseases is based on parasitological techniques and only a limited number of drugs are currently available for treatment, most of which are unspecific. Therefore, in-depth studies are urgently needed in order to clarify the current epidemiology of these helminth infections and to identify new and specific targets for both effective diagnosis and treatment. In this review, we describe the biology, medical and epidemiological features, and current treatment and diagnostic tools of the main groups of flukes and the corresponding diseases.

References

  1. 1.
    Keiser J, Utzinger J (2005) Emerging foodborne trematodiasis. Emerg Infect Dis 11:1507–1514PubMedCrossRefGoogle Scholar
  2. 2.
    Keiser J, Utzinger J (2009) Food-borne trematodiases. Clin Microbiol Rev 22:466–483PubMedCrossRefPubMedCentralGoogle Scholar
  3. 3.
    Sripa B, Kaewkes S, Intapan PM, Maleewong W, Brindley PJ (2010) Food-borne trematodiases in Southeast Asia: epidemiology, pathology, clinical manifestation and control. Adv Parasitol 72:305–350PubMedCrossRefGoogle Scholar
  4. 4.
    Toledo R, Bernal MD, Marcilla A (2011) Proteomics of foodborne trematodes. J Proteomics 74:1485–1503PubMedCrossRefGoogle Scholar
  5. 5.
    Balasegaram M, Balasegaram S, Malvy D, Millet P (2008) Neglected diseases in the news: a content analysis of recent international media coverage focussing on leishmaniasis and trypanosomiasis. PLoS Negl Trop Dis 2:e234PubMedCrossRefPubMedCentralGoogle Scholar
  6. 6.
    Hotez PJ, Fenwick A, Savioli L, Molyneux DH (2009) Rescuing the bottom billion through control of neglected tropical diseases. Lancet 373:1570–1575PubMedCrossRefGoogle Scholar
  7. 7.
    Moran M, Guzman J, Ropars AL, McDonald A, Jameson N, Omune B, Ryan S, Wu L (2009) Neglected disease research and development: how much are we really spending? PLoS Med 6:e30PubMedCrossRefGoogle Scholar
  8. 8.
    Halton DW (2004) Microscopy and the helminth parasite. Micron 35:361–390PubMedCrossRefGoogle Scholar
  9. 9.
    Lun ZR, Gasser RB, Lai DH, Li AX, Zhu XQ, Yu XB, Fang YY (2005) Clonorchiasis: a key foodborne zoonosis in China. Lancet Infect Dis 5:31–41PubMedCrossRefGoogle Scholar
  10. 10.
    World Health Organization (WHO) (1995) Control of foodborne trematode infections. Report of a WHO Study Group. World Health Organ Tech Rep Ser 849:1–157Google Scholar
  11. 11.
    Blair D, Agatsuma T, Wang W (2007) Paragonimiasis. In: Murrell KD, Fried B (eds) Food-borne parasitic zoonoses: fish and plant-borne parasites. World class parasites, vol 11. Springer, New York, pp 117–150Google Scholar
  12. 12.
    Murray CJ, Lopez AD (1996) Evidence-based health policy—lessons from the Global Burden of Disease Study. Science 274:740–743PubMedCrossRefGoogle Scholar
  13. 13.
    World Health Organization (WHO) (2004) The world health report 2004—changing history. WHO, Geneva, SwitzerlandGoogle Scholar
  14. 14.
    Hong ST, Fang Y (2012) Clonorchis sinensis and clonorchiasis, an update. Parasitol Int 61:17–24PubMedCrossRefGoogle Scholar
  15. 15.
    Andrews RH, Sithithaworn P, Petney TN (2008) Opisthorchis viverrini: an underestimated parasite in world health. Trends Parasitol 24:497–501PubMedCrossRefPubMedCentralGoogle Scholar
  16. 16.
    Sithithaworn P, Yongvanit P, Tesana S, Pairojkul C (2007) Liver flukes. In: Murrell KD, Fried B (eds) Food-borne parasitic zoonoses: fish and plant-borne parasites. World class parasites, vol 11. Springer, New York, pp 3–52Google Scholar
  17. 17.
    Chai JY (2007) Intestinal flukes. In: Murrell KD, Fried B (eds) Food-borne parasitic zoonoses: fish and plant-borne parasites. World class parasites, vol 11. Springer, New York, pp 53–115Google Scholar
  18. 18.
    Fried B, Abruzzi A (2010) Food-borne trematode infections of humans in the United States of America. Parasitol Res 106:1263–1280PubMedCrossRefGoogle Scholar
  19. 19.
    Rim HJ (2005) Clonorchiasis: an update. J Helminthol 79:269–281PubMedCrossRefGoogle Scholar
  20. 20.
    International Agency for Research on Cancer (IARC) (1994) IARC monographs on the evaluation of carcinogenic risks to humans: schistosomes, liver flukes and Helicobacter pylori. IARC Monographs 61:9–175Google Scholar
  21. 21.
    Choi BI, Han JK, Hong ST, Lee KH (2004) Clonorchiasis and cholangiocarcinoma: etiologic relationship and imaging diagnosis. Clin Microbiol Rev 17:540–552PubMedCrossRefPubMedCentralGoogle Scholar
  22. 22.
    Mayer DA, Fried B (2007) The role of helminth infections in carcinogenesis. Adv Parasitol 65:239–296PubMedCrossRefGoogle Scholar
  23. 23.
    Sripa B, Pairojkul C (2008) Cholangiocarcinoma: lessons from Thailand. Curr Opin Gastroenterol 24:349–356PubMedCrossRefGoogle Scholar
  24. 24.
    Malone JB (1997) The landscape epidemiology of fasciolosis: geographic determinants of disease risk. In: Boray JC (ed) Immunology, pathobiology and control of fasciolosis. MSD AGVET, Rahway, NJ, pp 65–81Google Scholar
  25. 25.
    Andrews SJ (1999) The life cycle of Fasciola hepatica. In: Dalton JP (ed) Fasciolosis. CABI Publishing, Oxford, pp 1–29Google Scholar
  26. 26.
    Robinson MW, Dalton JP (2009) Zoonotic helminth infections with particular emphasis on fasciolosis and other trematodiases. Philos Trans R Soc Lond B Biol Sci 364:2763–2776PubMedCrossRefGoogle Scholar
  27. 27.
    Mas-Coma S, Valero MA, Bargues MD (2009) Fasciola, lymnaeids and human fascioliasis, with a global overview on disease transmission, epidemiology, evolutionary genetics, molecular epidemiology and control. Adv Parasitol 69:41–146PubMedCrossRefGoogle Scholar
  28. 28.
    Mas-Coma S (2004) Human fascioliasis. In: Cotruvo JA, Dufour A, Rees G, Bartram J, Carr R, Cliver DO, Craun GF, Fayer R, Gannon VPJ (eds) Waterborne zoonoses: identification, causes and control. World Health Organization. IWA Publishing, London, UK, pp 305–322Google Scholar
  29. 29.
    Esteban JG, González C, Bargues MD, Angles R, Sánchez C, Náquira C, Mas-Coma S (2002) High fascioliasis infection in children linked to a man-made irrigation zone in Peru. Trop Med Int Health 7:339–348PubMedCrossRefGoogle Scholar
  30. 30.
    Mas-Coma S, Bargues MD, Valero MA (2005) Fascioliasis and other plant-borne trematode zoonoses. Int J Parasitol 35:1255–1278PubMedCrossRefGoogle Scholar
  31. 31.
    Esteban JG, Flores A, Angles R, Mas-Coma S (1999) High endemicity of human fascioliasis between Lake Titicaca and La Paz valley, Bolivia. Trans R Soc Trop Med Hyg 93:151–156PubMedCrossRefGoogle Scholar
  32. 32.
    Esteban JG, González C, Curtale F, Muñoz-Antoli C, Valero MA, Bargues MD, el-Sayed M, el-Wakeel AA, Abdel-Wahab Y, Montresor A, Engels D, Savioli L, Mas-Coma S (2003) Hyperendemic fascioliasis associated with schistosomiasis in villages in the Nile Delta of Egypt. Am J Trop Med Hyg 69:429–437PubMedGoogle Scholar
  33. 33.
    Rokni MB, Massoud J, O’Neill SM, Parkinson M, Dalton JP (2002) Diagnosis of human fasciolosis in the Gilan province of Northern Iran: application of cathepsin L-ELISA. Diagn Microbiol Infect Dis 44:175–179PubMedCrossRefGoogle Scholar
  34. 34.
    Garcia HH, Moro PL, Schantz PM (2007) Zoonotic helminth infections of humans: echinococcosis, cysticercosis and fascioliasis. Curr Opin Infect Dis 20:489–494PubMedCrossRefGoogle Scholar
  35. 35.
    Chen MG, Mott KE (1990) Progress in assessment of morbidity due to Fasciola hepatica infection: a review of recent literature. Trop Dis Bull 87:R1–R38Google Scholar
  36. 36.
    Aka NA, Adoubryn K, Rondelaud D, Dreyfuss G (2008) Human paragonimiasis in Africa. Ann Afr Med 7:153–162PubMedCrossRefGoogle Scholar
  37. 37.
    Procop GW (2009) North American paragonimiasis (caused by Paragonimus kellicotti) in the context of global paragonimiasis. Clin Microbiol Rev 22:415–446PubMedCrossRefPubMedCentralGoogle Scholar
  38. 38.
    Cribb TH, Bray RA, Olson PD, Littlewood DT (2003) Life cycle evolution in the digenea: a new perspective from phylogeny. Adv Parasitol 54:197–254PubMedCrossRefGoogle Scholar
  39. 39.
    Chai JY, Lee SH (2002) Food-borne intestinal trematode infections in the Republic of Korea. Parasitol Int 51:129–154PubMedCrossRefGoogle Scholar
  40. 40.
    Fried B, Graczyk TK, Tamang L (2004) Food-borne intestinal trematodiases in humans. Parasitol Res 93:159–170PubMedCrossRefGoogle Scholar
  41. 41.
    Hong ST, Chai JY, Lee SH (1986) Ten human cases of Fibricola seoulensis infection and mixed one with Stellantchasmus and Metagonimus. Korean J Parasitol 24:95–97CrossRefGoogle Scholar
  42. 42.
    Esteban JG, Muñoz-Antolí C (2009) Echinostomes: systematics and life cycles. In: Fried B, Toledo R (eds) The biology of echinostomes. From the molecule to the community. Springer, New York, pp 1–34Google Scholar
  43. 43.
    Huffman JE, Fried B (1990) Echinostoma and echinostomiasis. Adv Parasitol 29:215–269PubMedCrossRefGoogle Scholar
  44. 44.
    Toledo R, Esteban JG, Fried B (2009) Recent advances in the biology of echinostomes. Adv Parasitol 69:147–204PubMedCrossRefGoogle Scholar
  45. 45.
    Graczyk TK, Fried B (2007) Human waterborne trematode and protozoan infections. Adv Parasitol 64:111–160PubMedCrossRefGoogle Scholar
  46. 46.
    Chai JY (2009) Echinostomes in humans. In: Fried B, Toledo R (eds) The biology of echinostomes. From the molecule to the community. Springer, New York, pp 147–183Google Scholar
  47. 47.
    Haseeb MA, Eveland LK (2000) Human echinostomiasis: mechanisms of pathogenesis and host resistance. In: Fried B, Graczyk TK (eds) Echinostomes as experimental models for biological research. Kluwer Academic Publishers, Dordrecht, the Netherlands, pp 83–98Google Scholar
  48. 48.
    Sohn WM, Kim HJ, Yong TS, Eom KS, Jeong HG, Kim JK, Kang AR, Kim MR, Park JM, Ji SH, Sinuon M, Socheat D, Chai JY (2011) Echinostoma ilocanum infection in Oddar Meanchey Province, Cambodia. Korean J Parasitol 49:187–190PubMedCrossRefPubMedCentralGoogle Scholar
  49. 49.
    Toledo R (2009) Immunology and pathology of echinostome infections in the definitive host. In: Fried B, Toledo R (eds) The biology of echinostomes. From the molecule to the community. Springer, New York, pp 185–206Google Scholar
  50. 50.
    Toledo R, Esteban JG, Fried B (2006) Immunology and pathology of intestinal trematodes in their definitive hosts. Adv Parasitol 63:285–365PubMedCrossRefGoogle Scholar
  51. 51.
    Toledo R, Monteagudo C, Espert A, Fried B, Esteban JG, Marcilla A (2006) Echinostoma caproni: intestinal pathology in the golden hamster, a highly compatible host, and the Wistar rat, a less compatible host. Exp Parasitol 112:164–171PubMedCrossRefGoogle Scholar
  52. 52.
    Graczyk TK, Fried B (1998) Echinostomiasis: a common but forgotten food-borne disease. Am J Trop Med Hyg 58:501–504PubMedGoogle Scholar
  53. 53.
    Chattopadyay UK, Das MS, Pal D, Das S, Mukherjee A (1990) A case of echinostomiasis in a tribal community in Bengal. Ann Trop Med Parasitol 84:193PubMedGoogle Scholar
  54. 54.
    Lee SH, Chai JY (2001) A review of Gymnophalloides seoi (Digenea: Gymnophallidae) and human infections in the Republic of Korea. Korean J Parasitol 39:85–118PubMedCrossRefPubMedCentralGoogle Scholar
  55. 55.
    Scholz T (2002) Family Gymnophallidae Odhner, 1905. In: Gibson DI, Jones A, Bray RA (eds) Keys to the Trematoda, vol 1. CABI Publishing, Wallingford, pp 345–351Google Scholar
  56. 56.
    Chai JY, Choi MH, Yu JR, Lee SH (2003) Gymnophalloides seoi: a new human intestinal trematode. Trends Parasitol 19:109–112PubMedCrossRefGoogle Scholar
  57. 57.
    Chai JY, Lee GC, Park YK, Han ET, Seo M, Kim J, Guk SM, Shin EH, Choi MH, Lee SH (2000) Persistent endemicity of Gymnophalloides seoi infection in a southwestern coastal village of Korea with special reference to its egg laying capacity in the human host. Korean J Parasitol 38:51–57PubMedCrossRefPubMedCentralGoogle Scholar
  58. 58.
    Marty AM, Andersen EM (2000) Fasciolopsiasis and other intestinal trematodiasis. In: Meyers WM, Neafie RC, Marty AM, Wear DJ (eds) Pathology of infectious diseases, vol I helminthiases. Washington DC: Armed Forces Institute of Pathology (AFIP) and American Registry of Pathology, pp 93–105Google Scholar
  59. 59.
    Johansen MV, Sithithaworn P, Bergquist R, Utzinger J (2010) Towards improved diagnosis of zoonotic trematode infections in Southeast Asia. Adv Parasitol 73:171–195PubMedCrossRefGoogle Scholar
  60. 60.
    Wongratanacheewin S, Pumidonming W, Sermswan RW, Pipitgool V, Maleewong W (2002) Detection of Opisthorchis viverrini in human stool specimens by PCR. J Clin Microbiol 40:3879–3880PubMedCrossRefPubMedCentralGoogle Scholar
  61. 61.
    Chaicumpa W, Ruangkunaporn Y, Kalambaheti T, Limavongpranee S, Kitikoon V, Khusmith S, Pungpak S, Chongsa-nguan M, Sornmani S (1991) Specific monoclonal antibodies to Opisthorchis viverrini. Int J Parasitol 21:969–974PubMedCrossRefGoogle Scholar
  62. 62.
    Sirisinha S, Chawengkirttikul R, Haswell-Elkins MR, Elkins DB, Kaewkes S, Sithithaworn P (1995) Evaluation of a monoclonal antibody-based enzyme linked immunosorbent assay for the diagnosis of Opisthorchis viverrini infection in an endemic area. Am J Trop Med Hyg 52:521–524PubMedGoogle Scholar
  63. 63.
    Mazidur Rahman SM, Choi MH, Bae YM, Hong ST (2012) Coproantigen capture ELISA for detection of Clonorchis sinensis infection in experimentally infected rats. Parasitol Int 61:203–207PubMedCrossRefGoogle Scholar
  64. 64.
    Huang SY, Tang JD, Song HQ, Fu BQ, Xu MJ, Hu XC, Zhang H, Weng YB, Lin RQ, Zhu XQ (2012) A specific PCR assay for the diagnosis of Clonorchis sinensis infection in humans, cats and fishes. Parasitol Int 61:187–190PubMedCrossRefGoogle Scholar
  65. 65.
    Kim EM, Verweij JJ, Jalili A, Van Lieshout L, Choi MH, Bae YM, Lim MK, Hong ST (2009) Detection of Clonorchis sinensis in stool samples using real-time PCR. Ann Trop Med Parasitol 103:513–518PubMedCrossRefGoogle Scholar
  66. 66.
    Arimatsu Y, Kaewkes S, Laha T, Hong SJ, Sripa B (2012) Rapid detection of Opisthorchis viverrini copro-DNA using loop-mediated isothermal amplification (LAMP). Parasitol Int 61:178–182PubMedCrossRefGoogle Scholar
  67. 67.
    Espinoza JR, Maco V, Marcos L, Saez S, Neyra V, Terashima A, Samalvides F, Gotuzzo E, Chavarry E, Huaman MC, Bargues MD, Valero MA, Mas-Coma S (2007) Evaluation of Fas2-ELISA for the serological detection of Fasciola hepatica infection in humans. Am J Trop Med Hyg 76:977–982PubMedGoogle Scholar
  68. 68.
    Marcilla A, De la Rubia JE, Sotillo J, Bernal D, Carmona C, Villavicencio Z, Acosta D, Tort J, Bornay FJ, Esteban JG, Toledo R (2008) Leucine aminopeptidase is an immunodominant antigen of Fasciola hepatica excretory and secretory products in human infections. Clin Vaccine Immunol 15:95–100PubMedCrossRefPubMedCentralGoogle Scholar
  69. 69.
    O’Neill SM, Parkinson M, Strauss W, Angles R, Dalton JP (1998) Immunodiagnosis of Fasciola hepatica infection (fascioliasis) in a human population in the Bolivian Altiplano using purified cathepsin L cysteine proteinase. Am J Trop Med Hyg 58:417–423PubMedGoogle Scholar
  70. 70.
    Lee JS, Lee J, Kim SH, Yong TS (2007) Molecular cloning and characterization of a major egg antigen in Paragonimus westermani and its use in ELISA for the immunodiagnosis of paragonimiasis. Parasitol Res 100:677–681PubMedCrossRefGoogle Scholar
  71. 71.
    Maleewong W, Intapan PM, Wongkham C, Wongsaroj T, Kowsuwan T, Pumidonming W, Pongsaskulchoti P, Kitikoon V (2003) Detection of Opisthorchis viverrini in experimentally infected bithynid snails and cyprinoid fishes by a PCR-based method. Parasitology 126:63–67PubMedCrossRefGoogle Scholar
  72. 72.
    Doanh PN, Dung do T, Thach DT, Horii Y, Shinohara A, Nawa Y (2011) Human paragonimiasis in Viet Nam: epidemiological survey and identification of the responsible species by DNA sequencing of eggs in patients’ sputum. Parasitol Int 60:534–537PubMedCrossRefGoogle Scholar
  73. 73.
    Chen MX, Ai L, Zhang RL, Xia JJ, Wang K, Chen SH, Zhang YN, Xu MJ, Li X, Zhu XQ, Chen JX (2011) Sensitive and rapid detection of Paragonimus westermani infection in humans and animals by loop-mediated isothermal amplification (LAMP). Parasitol Res 108:1193–1198PubMedCrossRefGoogle Scholar
  74. 74.
    Lee SC, Chung YB, Kong Y, Kang SY, Cho SY (1993) Antigenic protein fractions of Metagonimus yokogawai reacting with patient sera. Korean J Parasitol 31:43–48PubMedCrossRefGoogle Scholar
  75. 75.
    Ditrich O, Kopacek P, Giboda M, Gutvirth J, Scholz T (1991) Serological differentiation of human small fluke infections using Opisthorchis viverrini and Haplorchis taichui antigens. Southeast Asian J Trop Med Public Health 22:174–178PubMedGoogle Scholar
  76. 76.
    Sohn WM (2009) Fish-borne zoonotic trematode metacercariae in the Republic of Korea. Korean J Parasitol 47:S103–S113PubMedCrossRefPubMedCentralGoogle Scholar
  77. 77.
    Fried B (1994) Metacercarial excystment of trematodes. Adv Parasitol 33:91–144PubMedCrossRefGoogle Scholar
  78. 78.
    Fried B, Peoples RC (2009) Maintenance, cultivation and excystation of echinostomes: 2000–2007. In: Fried B, Toledo R (eds) The biology of echinostomes. From the molecule to the community. Springer, New York, pp 111–128Google Scholar
  79. 79.
    Hertel J, Haberl B, Hamburger J, Haas W (2003) Description of a tandem repeated DNA sequence of Echinostoma caproni and methods for its detection in snail and plankton samples. Parasitology 126:443–449PubMedCrossRefGoogle Scholar
  80. 80.
    Cai XQ, Yu HQ, Bai JS, Tang JD, Hu XC, Chen DH, Zhang RL, Chen MX, Ai L, Zhu XQ (2012) Development of a TaqMan based real-time PCR assay for detection of Clonorchis sinensis DNA in human stool samples and fishes. Parasitol Int 61:183–186PubMedCrossRefGoogle Scholar
  81. 81.
    Keiser J, Utzinger J (2004) Chemotherapy for major food-borne trematodes: a review. Expert Opin Pharmacother 5:1711–1726PubMedCrossRefGoogle Scholar
  82. 82.
    Tinga N, De N, Vien HV, Chau L, Toan ND, Kager PA, Vries PJ (1999) Little effect of praziquantel or artemisinin on clonorchiasis in Northern Vietnam. A pilot study. Trop Med Int Health 4:814–818PubMedCrossRefGoogle Scholar
  83. 83.
    Ibarra VF, García SE, Fernández RM, Vera MY, Castillo BR, Hernández CA (1997) Eficacia de dos compuestos de síntesis química in vitro e in vivo en ovinos. Vet Méx 28:291–296Google Scholar
  84. 84.
    Ibarra VF, Vera MY, Hernández CA, Castillo BR (1997) Eficacia fasciolicida del compuesto “alfa” contra estadios juveniles y adultos en ovinos. Vet Méx 28:297–301Google Scholar
  85. 85.
    Rivera FN, Ibarra VF, Olazarán JS, Vera MY, Castillo BR, Hernández CA (2002) Efficacy of 5-2-chloro-methylthio-6-(1-naftiloxi)-ih-benzimidazole against different stages of Fasciola hepatica in Pelibuey sheep. Vet Méx 33:55–61Google Scholar
  86. 86.
    Vera MY, Ibarra VF, Quiroz RH, Hernández CA, Castillo R (2003) Field trial on the efficacy of an experimental fasciolicide compared with some commercial compounds in naturally infected cattle. Parasitol Res 91:1–4CrossRefGoogle Scholar
  87. 87.
    Vera MY, Ibarra VF, Liébano HE, Quiroz RH, Castillo BR, Hernández CA, Ochoa GP (2004) Efficacy of an experimental fasciolicide against immature and mature Fasciola hepatica in artificially infected calves. Parasitol Res 92:211–214CrossRefGoogle Scholar
  88. 88.
    McConville M, Brennan GP, Flanagan A, Edgar HW, Hanna REB, McCoy M, Gordon AW, Castillo R, Hernández-Campos A, Fairweather I (2009) An evaluation of the efficacy of compound alpha and triclabendazole against two isolates of Fasciola hepatica. Vet Parasitol 162:75–88PubMedCrossRefGoogle Scholar
  89. 89.
    McConville M, Hanna REB, Brennan GP, McCoy M, Edgar HWJ, McConnell S, Castillo R, Hernández-Campos A, Fairweather I (2010) Fasciola hepatica: disruption of spermatogenesis by the fasciolicide compound alpha. Parasitol Res 106:311–323PubMedCrossRefGoogle Scholar
  90. 90.
    McConville M, Brennan GP, McCoy M, Castillo R, Hernández-Campos A, Ibarra F, Fairweather I (2006) Adult triclabendazole-resistant Fasciola hepatica: surface and subsurface tegumental responses to in vitro treatment with the sulphoxide metabolite of the experimental fasciolicide compound alpha. Parasitology 133:195–208PubMedCrossRefGoogle Scholar
  91. 91.
    Hanna REB, Edgar HWJ, McConnell S, Toner E, McConville M, Brennan GP, Devine C, Flanagan A, Halferty L, Meaney M, Shaw L, Moffett D, McCoy M, Fairweather I (2010) Fasciola hepatica: histological changes in the reproductive structures of triclabendazole (TCBZ)-sensitive and TCBZ-resistant flukes after treatment in vivo with TCBZ and the related benzimidazole derivative, Compound Alpha. Vet Parasitol 168:240–254PubMedCrossRefGoogle Scholar
  92. 92.
    Keiser J, Utzinger J (2007) Food-borne trematodiasis: current chemotherapy and advances with artemisinins and synthetic trioxolanes. Trends Parasitol 23:555–562PubMedCrossRefGoogle Scholar
  93. 93.
    Keiser J, Xiao SH, Xue J, Chan ZS, Odermatt P, Tesana S, Tanner M, Utzinger J (2006) Effect of artesunate and artemether against Clonorchis sinensis and Opisthorchis viverrini in rodent models. Int J Antimicrob Agents 28:370–373PubMedCrossRefGoogle Scholar
  94. 94.
    Xiao SH, Xue J, Tanner M, Zhang YN, Keiser J, Utzinger J, Quiang HQ (2008) Artemether, artesunate, praziquantel and tribendimidine administered singly at different dosages against Clonorchis sinensis: a comparative in vivo study. Acta Trop 106:54–59PubMedCrossRefGoogle Scholar
  95. 95.
    Keiser J, Brun R, Fried B, Utzinger J (2006) Trematocidal activity of praziquantel and artemisinin derivatives: in vitro and in vivo investigations with adult Echinostoma caproni. Antimicrob Agents Chemother 50:803–805PubMedCrossRefPubMedCentralGoogle Scholar
  96. 96.
    Fathy FM (2011) Anthelmintic effect of artesunate in experimental heterophyid infection. J Egypt Soc Parasitol 41:469–483PubMedGoogle Scholar
  97. 97.
    Keiser J, Utzinger J, Vennerstrom JL, Dong Y, Brennan G, Fairweather I (2007) Activity of artemether and OZ78 against triclabendazole-resistant Fasciola hepatica. Trans R Soc Trop Med Hyg 101:1219–1222PubMedCrossRefGoogle Scholar
  98. 98.
    Keiser J, Rinaldi L, Veneziano V, Mezzino L, Tanner M, Utzinger J, Cringoli G (2008) Efficacy and safety of artemether against a natural Fasciola hepatica infection in sheep. Parasitol Res 103:517–522PubMedCrossRefGoogle Scholar
  99. 99.
    Hien TT, Truong NT, Minh NH, Dat HD, Dung NT, Hue NT, Dung TK, Tuan PQ, Campbell JI, Farrar JJ, Day JN (2008) A randomized controlled pilot study of artesunate versus triclabendazole for human fascioliasis in central Vietnam. Am J Trop Med Hyg 73:388–392Google Scholar
  100. 100.
    Keiser J, Sayed H, el-Ghanam M, Sabry H, Anani S, el-Wakeel A, Hatz C, Utzinger J, el-Din SS, el-Maadawy W, Botros S (2011) Efficacy and safety of artemether in the treatment of chronic fascioliasis in Egypt: exploratory phase-2 trials. PLoS Negl Trop Dis 5:e1285PubMedCrossRefPubMedCentralGoogle Scholar
  101. 101.
    Keiser J, Utzinger J, Tanner M, Dong Y, Vennerstrom JL (2006) The synthetic peroxide OZ78 is effective against Echinostoma caproni and Fasciola hepatica. J Antimicrob Chemother 58:1193–1197PubMedCrossRefGoogle Scholar
  102. 102.
    Keiser J, Kirchhofer C, Haschke M, Huwyler J, Dong Y, Vennerstrom JL, Vanhoff K, Kaminsky R, Malikides N (2010) Efficacy, safety and pharmacokinetics of 1,2,4-trioxolane OZ78 against an experimental infection with Fasciola hepatica in sheep. Vet Parasitol 173:228–235PubMedCrossRefGoogle Scholar
  103. 103.
    Keiser J, Shu-Hua X, Chollet J, Tanner M, Utzinger J (2007) Evaluation of the in vivo activity of tribendimidine against Schistosoma mansoni, Fasciola hepatica, Clonorchis sinensis, and Opisthorchis viverrini. Antimicrob Agents Chemother 51:1096–1098PubMedCrossRefPubMedCentralGoogle Scholar
  104. 104.
    Soliman MI, Taha HA (2011) Tegumental alterations of Fasciola gigantica due to in vitro treatment with Ro-354. Trop Biomed 28:283–292PubMedGoogle Scholar
  105. 105.
    Kerboeuf D, Riou M, Guégnard F (2008) Flavonoids and related compounds in parasitic disease control. Mini Rev Med Chem 8:116–128PubMedCrossRefGoogle Scholar
  106. 106.
    Ferreira JFS, Peaden P, Keiser J (2011) In vitro trematocidal effects of crude alcoholic extracts of Artemisia annua, A. absinthium, Asimina triloba, and Fumaria officinalis. Trematocidal plant alcoholic extracts. Parasitol Res 109:1585–1592PubMedCrossRefGoogle Scholar
  107. 107.
    Traub RJ, Macaranas J, Mungthin M, Leelayoova S, Cribb T, Murrell KD, Thompson RC (2009) A new PCR-based approach indicates the range of Clonorchis sinensis now extends to Central Thailand. PLoS Negl Trop Dis 3:e367PubMedCrossRefPubMedCentralGoogle Scholar
  108. 108.
    Kim TY, Chung EJ, Sohn WM, Hong SH, Yong TS (2011) Molecular characterization of Clonorchis sinensis tetraspanin 2 extracellular loop 2. Parasitol Res (in press)Google Scholar
  109. 109.
    Chen W, Wang X, Li X, Lv X, Zhou C, Deng C, Lei H, Men J, Fan Y, Liang C, Yu X (2011) Molecular characterization of cathepsin B from Clonorchis sinensis excretory/secretory products and assessment of its potential for serodiagnosis of clonorchiasis. Parasit Vectors 4:149PubMedCrossRefPubMedCentralGoogle Scholar
  110. 110.
    Wang X, Chen W, Li X, Zhou C, Deng C, Lv X, Fan Y, Men J, Liang C, Yu X (2011) Identification and molecular characterization of a novel signaling molecule 14-3-3 epsilon in Clonorchis sinensis excretory/secretory products. Parasitol Res (in press)Google Scholar
  111. 111.
    Lee MR, Kim YJ, Kim DW, Yoo WG, Cho SH, Hwang KY, Ju JW, Lee WJ (2011) The identification of antigenic proteins: 14-3-3 protein and propionyl-CoA carboxylase in Clonorchis sinensis. Mol Biochem Parasitol (in press)Google Scholar
  112. 112.
    Wu W, Chen J, Zeng S, Zhang Z, Gan W, Yu X, Hu X (2011) Molecular cloning, expression, and characterization of cyclophilin A from Clonorchis sinensis. Parasitol Res 109:345–351PubMedCrossRefGoogle Scholar
  113. 113.
    Zhou Z, Xia H, Hu X, Huang Y, Li Y, Li L, Ma C, Chen X, Hu F, Xu J, Lu F, Wu Z, Yu X (2008) Oral administration of a Bacillus subtilis spore-based vaccine expressing Clonorchis sinensis tegumental protein 22.3 kDa confers protection against Clonorchis sinensis. Vaccine 26:1817–1825PubMedCrossRefGoogle Scholar
  114. 114.
    Huang SY, Zhao GH, Fu BQ, Xu MJ, Wang CR, Wu SM, Zou FC, Zhu XQ (2012) Genomics and molecular genetics of Clonorchis sinensis: current status and perspectives. Parasitol Int 61:71–76PubMedCrossRefGoogle Scholar
  115. 115.
    Wang X, Chen W, Huang Y, Sun J, Men J, Liu H, Luo F, Guo L, Lv X, Deng C, Zhou C, Fan Y, Li X, Huang L, Hu Y, Liang C, Hu X, Xu J, Yu X (2011) The draft genome of the carcinogenic human liver fluke Clonorchis sinensis. Genome Biol 12:R107PubMedCrossRefPubMedCentralGoogle Scholar
  116. 116.
    Yoo WG, Kim DW, Ju JW, Cho PY, Kim TI, Cho SH, Choi SH, Park HS, Kim TS, Hong SJ (2011) Developmental transcriptomic features of the carcinogenic liver fluke, Clonorchis sinensis. PLoS Negl Trop Dis 5:e1208PubMedCrossRefPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Departamento de Parasitología, Facultad de FarmaciaUniversidad de ValenciaBurjassot, ValenciaSpain
  2. 2.Department of BiologyLafayette CollegeEastonUSA

Personalised recommendations