Advertisement

Electrochemically activated solutions: evidence for antimicrobial efficacy and applications in healthcare environments

  • R. M. S. Thorn
  • S. W. H. Lee
  • G. M. Robinson
  • J. Greenman
  • D. M. ReynoldsEmail author
Review

Abstract

Due to the limitations associated with the use of existing biocidal agents, there is a need to explore new methods of disinfection to help maintain effective bioburden control, especially within the healthcare environment. The transformation of low mineral salt solutions into an activated metastable state, by electrochemical unipolar action, produces a solution containing a variety of oxidants, including hypochlorous acid, free chlorine and free radicals, known to possess antimicrobial properties. Electrochemically activated solutions (ECAS) have been shown to have broad-spectrum antimicrobial activity, and have the potential to be widely adopted within the healthcare environment due to low-cost raw material requirements and ease of production (either remotely or in situ). Numerous studies have found ECAS to be highly efficacious, as both a novel environmental decontaminant and a topical treatment agent (with low accompanying toxicity), but they are still not in widespread use, particularly within the healthcare environment. This review provides an overview of the scientific evidence for the mode of action, antimicrobial spectrum and potential healthcare-related applications of ECAS, providing an insight into these novel yet seldom utilised biocides.

Keywords

Aflatoxin Biocide Root Canal Free Chlorine Kill Rate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors would like to thank Dann Turner for his critical assessment of the manuscript.

References

  1. 1.
    Denyer SP (1995) Mechanisms of action of antibacterial biocides. Int Biodeterior Biodegrad 36(3–4):227–245CrossRefGoogle Scholar
  2. 2.
    McDonnell G, Russell AD (1999) Antiseptics and disinfectants: activity, action, and resistance. Clin Microbiol Rev 12(1):147–179PubMedGoogle Scholar
  3. 3.
    Health Protection Agency (HPA) (2008) Antimicrobial resistance and prescribing in England, Wales and Northern Ireland. HPA, LondonGoogle Scholar
  4. 4.
    Di Stefano F, Siriruttanapruk S, McCoach J, Burge PS (1999) Glutaraldehyde: an occupational hazard in the hospital setting. Allergy 54:1105–1109PubMedCrossRefGoogle Scholar
  5. 5.
    Sobaszek A, Hache JC, Frimat P, Akakpo V, Victoire G, Furon D (1999) Working conditions and health effects of ethylene oxide exposure at hospital sterilization sites. J Occup Environ Med 41(6):492–499PubMedCrossRefGoogle Scholar
  6. 6.
    Rideout K, Teschke K, Dimich-Ward H, Kennedy SM (2005) Considering risks to healthcare workers from glutaraldehyde alternatives in high-level disinfection. J Hosp Infect 59(1):4–11PubMedCrossRefGoogle Scholar
  7. 7.
    Middleton AM, Chadwick MV, Sanderson JL, Gaya H (2000) Comparison of a solution of super-oxidized water (Sterilox) with glutaraldehyde for the disinfection of bronchoscopes, contaminated. J Hosp Infect 45(4):278–282PubMedCrossRefGoogle Scholar
  8. 8.
    Fraise AP (2002) Biocide abuse and antimicrobial resistance—a cause for concern? J Antimicrob Chemother 49(1):11–12PubMedCrossRefGoogle Scholar
  9. 9.
    Scientific Committee on Emerging and Newly Identified Health Risks (SCENIHR) (2009) Assessment of the antibiotic resistance effects of biocides. SCENIHR, European CommissionGoogle Scholar
  10. 10.
    Nakagawara S, Goto T, Nara M, Ozawa Y, Hotta K, Arata Y (1998) Spectroscopic characterization and the pH dependence of bactericidal activity of the aqueous chlorine solution. Anal Sci 14:691–698CrossRefGoogle Scholar
  11. 11.
    Prilutsky VI, Bakhir VM (1997) Electrochemically actuating water: anomalous characteristics, mechanism of biological action. VNIIIMT, MoscowGoogle Scholar
  12. 12.
    Kraft A (2008) Electrochemical water disinfection: a short review. Platinum Metals Rev 52(3):177–185CrossRefGoogle Scholar
  13. 13.
    Barratt LP, Lloyd BJ, Graham JD (1990) Comparative evaluation of two novel disinfection methods for small-community water treatment in developing countries. Aqua 39(6):396–404Google Scholar
  14. 14.
    Huang Y-R, Hung Y-C, Hsu S-Y, Huang Y-W, Hwang D-F (2008) Application of electrolyzed water in the food industry. Food Control 19(4):329–345CrossRefGoogle Scholar
  15. 15.
    Cai Z (2005) Characterisation of electrochemically activated solutions for use in environmental remediation. Ph.D. Thesis. University of the West of England, BristolGoogle Scholar
  16. 16.
    Trasatti S (1987) Progress in the understanding of the mechanism of chlorine evolution at oxide electrodes. Electrochim Acta 32(3):369–382CrossRefGoogle Scholar
  17. 17.
    Trasatti S (2000) Electrocatalysis: understanding the success of DSA®. Electrochim Acta 45(15–16):2377–2385CrossRefGoogle Scholar
  18. 18.
    Evdokimov S (2000) Mechanism of chlorine evolution-ionization on dimensionally stable anodes. Russ J Electrochem 36(3):227–230CrossRefGoogle Scholar
  19. 19.
    Burke LD, O’Neill JF (1979) Some aspects of the chlorine evolution reaction at ruthenium dioxide anodes. J Electroanal Chem 101(3):341–349CrossRefGoogle Scholar
  20. 20.
    Erenburg R, Krishtalik L, Rogozhina N (1984) PH effect on chlorine reaction kinetics on ruthenium titanium oxide anode. Elektrokhimiya 20:1183–1190Google Scholar
  21. 21.
    Boggio R, Carugati A, Lodi G, Trasatti S (1985) Mechanistic study of Cl2 evolution at Ti-supported Co3O4 anodes. J App Electrochem 15(3):335–349CrossRefGoogle Scholar
  22. 22.
    Trasatti S (1991) Physical electrochemistry of ceramic oxides. Electrochim Acta 36(2):225–241CrossRefGoogle Scholar
  23. 23.
    Devilliers D, Mahe E (2007) Modified titanium electrodes. In: Nunez M (ed) New trends in electrochemistry research. Nova Science Publishers, Inc., New York, pp 1–60Google Scholar
  24. 24.
    Tomcsányi L, De Battisti A, Hirschberg G, Varga K, Liszi J (1999) The study of the electrooxidation of chloride at RuO2/TiO2 electrode using CV and radiotracer techniques and evaluating by electrochemical kinetic simulation methods. Electrochim Acta 44(14):2463–2472CrossRefGoogle Scholar
  25. 25.
    Stoner GE, Cahen GL Jr, Sachyani M, Gileadi E (1982) The mechanism of low frequency a.c. electrochemical disinfection. Bioelectrochem Bioenerget 9(3):229–243CrossRefGoogle Scholar
  26. 26.
    McPherson LL (1993) Understanding ORP’s role in the disinfection process. Water Eng Manage 140(11):29–31Google Scholar
  27. 27.
    Gulabivala K, Stock CJR, Lewsey JD, Ghori S, Ng Y-L, Spratt DA (2004) Effectiveness of electrochemically activated water as an irrigant in an infected tooth model. Int Endod J 37(9):624–631PubMedCrossRefGoogle Scholar
  28. 28.
    Hotta K, Kawaguchi K, Saitoh F, Saito N, Suzuki K, Ochi K, Nakayama T (1994) Antimicrobial activity of electrolyzed NaCl solutions: effect on the growth of Streptomyces spp. Actinomycetologica 8(2):51–56CrossRefGoogle Scholar
  29. 29.
    Petrushanko IY, Lobyshev VI (2001) Nonequilibrium state of electrochemically activated water and its biological activity. Biofizika 46(3):389–401PubMedGoogle Scholar
  30. 30.
    Len SV, Hung YC, Erickson M, Kim C (2000) Ultraviolet spectrophotometric characterization and bactericidal properties of electrolyzed oxidizing water as influenced by amperage and pH. J Food Prot 63:1534–1537PubMedGoogle Scholar
  31. 31.
    Len SV, Hung YC, Chung D, Anderson JL, Erickson MC, Morita K (2002) Effects of storage conditions and pH on chlorine loss in electrolyzed oxidizing (EO) water. J Agric Food Chem 50(1):209–212PubMedCrossRefGoogle Scholar
  32. 32.
    Hsu S-Y, Kao H-Y (2004) Effects of storage conditions on chemical and physical properties of electrolyzed oxidizing water. J Food Eng 65(3):465–471CrossRefGoogle Scholar
  33. 33.
    Inoue Y, Endo S, Kondo K, Ito H, Omori H, Saito K (1997) Trial of electrolyzed strong acid aqueous solution lavage in the treatment of peritonitis and intraperitoneal abscess. Artif Organs 21(1):28–31PubMedCrossRefGoogle Scholar
  34. 34.
    Kumon K (1997) What is functional water? Artif Organs 21(1):2–4PubMedCrossRefGoogle Scholar
  35. 35.
    Chittoria RK, Yootla M, Sampatrao LM, Raman SV (2007) The role of super oxidized solution in the management of diabetic foot ulcer: our experience. Nepal Med Coll J 9:125–128PubMedGoogle Scholar
  36. 36.
    Venkitanarayanan KS, Ezeike GO, Hung Y-C, Doyle MP (1999) Efficacy of electrolyzed oxidizing water for inactivating Escherichia coli O157:H7, Salmonella enteritidis, and Listeria monocytogenes. Appl Environ Microbiol 65(9):4276–4279PubMedGoogle Scholar
  37. 37.
    Al-Haq MI, Seo Y, Oshita S, Kawagoe Y (2002) Disinfection effects of electrolyzed oxidizing water on suppressing fruit rot of pear caused by Botryosphaeria berengeriana. Food Res Int 35(7):657–664CrossRefGoogle Scholar
  38. 38.
    Kim C, Hung YC, Brackett RE (2000) Roles of oxidation-reduction potential in electrolyzed oxidizing and chemically modified water for the inactivation of food-related pathogens. J Food Prot 63:19–24PubMedGoogle Scholar
  39. 39.
    Liao LB, Chen WM, Xiao XM (2007) The generation and inactivation mechanism of oxidation-reduction potential of electrolyzed oxidizing water. J Food Eng 78(4):1326–1332CrossRefGoogle Scholar
  40. 40.
    Park H, Hung Y-C, Chung D (2004) Effects of chlorine and pH on efficacy of electrolyzed water for inactivating Escherichia coli O157:H7 and Listeria monocytogenes. Int J Food Microbiol 91(1):13–18PubMedCrossRefGoogle Scholar
  41. 41.
    McKenna SM, Davies KJ (1988) The inhibition of bacterial growth by hypochlorous acid. Possible role in the bactericidal activity of phagocytes. Biochem J 254(3):685–692PubMedGoogle Scholar
  42. 42.
    Barrette WC Jr, Hannum DM, Wheeler WD, Hurst JK (1989) General mechanism for the bacterial toxicity of hypochlorous acid: abolition of ATP production. Biochemistry 28(23):9172–9178PubMedCrossRefGoogle Scholar
  43. 43.
    Yonemori S, Takimoto Y, Min KH, Jitsugiri Y, Simohira T, Miyake H (1997) Analysis of hydroxyl radical generated in electrolyzed strong acid aqueous solution by electron spin resonance spectroscopy. Nippon Kagaku Kaishi 7:497–501CrossRefGoogle Scholar
  44. 44.
    Suzuki T, Noro T, Kawamura Y, Fukunaga K, Watanabe M, Ohta M, Sugiue H, Sato Y, Kohno M, Hotta K (2002) Decontamination of aflatoxin-forming fungus and elimination of aflatoxin mutagenicity with electrolyzed NaCl anode solution. J Agric Food Chem 50(3):633–641PubMedCrossRefGoogle Scholar
  45. 45.
    Comninellis C (1994) Electrocatalysis in the electrochemical conversion/combustion of organic pollutants for waste water treatment. Electrochim Acta 39(11–12):1857–1862CrossRefGoogle Scholar
  46. 46.
    Xiong K, Liu HJ, Liu R, Li LT (2010) Differences in fungicidal efficiency against Aspergillus flavus for neutralized and acidic electrolyzed oxidizing waters. Int J Food Microbiol 137(1):67–75PubMedCrossRefGoogle Scholar
  47. 47.
    Martínez-De Jesús FR, Ramos-De la Medina A, Remes-Troche JM, Armstrong DG, Wu SC, Lázaro Martínez JL, Beneit-Montesinos JV (2007) Efficacy and safety of neutral pH superoxidised solution in severe diabetic foot infections. Int Wound J 4(4):353–362PubMedGoogle Scholar
  48. 48.
    Selkon JB, Babb JR, Morris R (1999) Evaluation of the antimicrobial activity of a new super-oxidized water, Sterilox®, for the disinfection of endoscopes. J Hosp Infect 41(1):59–70PubMedCrossRefGoogle Scholar
  49. 49.
    Park E-J, Alexander E, Taylor GA, Costa R, Kang D-H (2009) The decontaminative effects of acidic electrolyzed water for Escherichia coli O157:H7, Salmonella typhimurium, and Listeria monocytogenes on green onions and tomatoes with differing organic demands. Food Microbiol 26(4):386–390PubMedCrossRefGoogle Scholar
  50. 50.
    Oomori T, Oka T, Inuta T, Arata Y (2000) The efficiency of disinfection of acidic electrolyzed water in the presence of organic materials. Anal Sci 16(4):365–369CrossRefGoogle Scholar
  51. 51.
    Tanaka N, Fujisawa T, Daimon T, Fujiwara K, Yamamoto M, Abe T (1999) The effect of electrolyzed strong acid aqueous solution on hemodialysis equipment. Artif Organs 23(12):1055–1062PubMedCrossRefGoogle Scholar
  52. 52.
    Gutierrez AA (2006) The science behind stable, super-oxidized water. Wounds 18(Suppl 1):7–10Google Scholar
  53. 53.
    Shimada K, Ito K, Murai S (2000) A comparison of the bactericidal effects and cytotoxic activity of three types of oxidizing water, prepared by electrolysis, as chemical dental plaque control agents. Int J Antimicrob Agents 15(1):49–53PubMedCrossRefGoogle Scholar
  54. 54.
    Vorobjeva NV, Vorobjeva LI, Khodjaev EY (2004) The bactericidal effects of electrolyzed oxidizing water on bacterial strains involved in hospital infections. Artif Organs 28(6):590–592PubMedCrossRefGoogle Scholar
  55. 55.
    Horiba N, Hiratsuka K, Onoe T, Yoshida T, Suzuki K, Matsumoto T, Nakamura H (1999) Bactericidal effect of electrolyzed neutral water on bacteria isolated from infected root canals. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 87(1):83–87PubMedCrossRefGoogle Scholar
  56. 56.
    Kim C, Hung Y-C, Brackett RE (2000) Efficacy of electrolyzed oxidizing (EO) and chemically modified water on different types of foodborne pathogens. Int J Food Microbiol 61(2–3):199–207PubMedCrossRefGoogle Scholar
  57. 57.
    Tanaka H, Hirakata Y, Kaku M, Yoshida R, Takemura H, Mizukane R, Ishida K, Tomono K, Koga H, Kohno S, Kamihira S (1996) Antimicrobial activity of superoxidized water. J Hosp Infect 34(1):43–49PubMedCrossRefGoogle Scholar
  58. 58.
    Park H, Hung Y-C, Brackett RE (2002) Antimicrobial effect of electrolyzed water for inactivating Campylobacter jejuni during poultry washing. Int J Food Microbiol 72(1–2):77–83PubMedCrossRefGoogle Scholar
  59. 59.
    Issa-Zacharia A, Kamitani Y, Tiisekwa A, Morita K, Iwasaki K (2010) In vitro inactivation of Escherichia coli, Staphylococcus aureus and Salmonella spp. using slightly acidic electrolyzed water. J Biosci Bioeng 110(3):308–313PubMedCrossRefGoogle Scholar
  60. 60.
    Zeng X, Tang W, Ye G, Ouyang T, Tian L, Ni Y, Li P (2010) Studies on disinfection mechanism of electrolyzed oxidizing water on E. coli and Staphylococcus aureus. J Food Sci 75(5):M253–M260PubMedCrossRefGoogle Scholar
  61. 61.
    Landa-Solis C, González-Espinosa D, Guzmán-Soriano B, Snyder M, Reyes-Terán G, Torres K, Gutierrez AA (2005) Microcyn™: a novel super-oxidized water with neutral pH and disinfectant activity. J Hosp Infect 61(4):291–299PubMedCrossRefGoogle Scholar
  62. 62.
    Shetty N, Srinivasan S, Holton J, Ridgway GL (1999) Evaluation of microbicidal activity of a new disinfectant: Sterilox® 2500 against Clostridium difficile spores, Helicobacter pylori, vancomycin resistant Enterococcus species, Candida albicans and several Mycobacterium species. J Hosp Infect 41(2):101–105PubMedCrossRefGoogle Scholar
  63. 63.
    Masuda T, Oikawa K, Oikawa H, Sato S, Sato K, Kano A (1995) Endoscope disinfection with acid electrolyzed water. Dig Endosc 7(1):61–64CrossRefGoogle Scholar
  64. 64.
    Baltch AL, Smith RP, Franke MA, Ritz WJ, Michelsen P, Bopp LH, Singh JK (2000) Microbicidal activity of MDI-P against Candida albicans, Staphylococcus aureus, Pseudomonas aeruginosa, and Legionella pneumophila. Am J Infect Control 28(3):251–257PubMedCrossRefGoogle Scholar
  65. 65.
    Fabrizio KA, Cutter CN (2003) Stability of electrolyzed oxidizing water and its efficacy against cell suspensions of Salmonella typhimurium and Listeria monocytogenes. J Food Prot 66:1379–1384PubMedGoogle Scholar
  66. 66.
    Kiura H, Sano K, Morimatsu S, Nakano T, Morita C, Yamaguchi M, Maeda T, Katsuoka Y (2002) Bactericidal activity of electrolyzed acid water from solution containing sodium chloride at low concentration, in comparison with that at high concentration. J Microbiol Methods 49(3):285–293PubMedCrossRefGoogle Scholar
  67. 67.
    Fenner DC, Bürge B, Kayser HP, Wittenbrink MM (2006) The anti-microbial activity of electrolysed oxidizing water against microorganisms relevant in veterinary medicine. J Vet Med B Infect Dis Vet Public Health 53(3):133–137PubMedCrossRefGoogle Scholar
  68. 68.
    Robinson GM, Lee SWH, Greenman J, Salisbury VC, Reynolds DM (2010) Evaluation of the efficacy of electrochemically activated solutions against nosocomial pathogens and bacterial endospores. Lett Appl Microbiol 50(3):289–294PubMedCrossRefGoogle Scholar
  69. 69.
    Park H, Hung YC, Kim C (2002) Effectiveness of electrolyzed water as a sanitizer for treating different surfaces. J Food Prot 65:1276–1280PubMedGoogle Scholar
  70. 70.
    Buck JW, van Iersel MW, Oetting RD, Hung Y-C (2002) In vitro fungicidal activity of acidic electrolyzed oxidizing water. Plant Dis 86(3):278–281CrossRefGoogle Scholar
  71. 71.
    Loshon CA, Melly E, Setlow B, Setlow P (2001) Analysis of the killing of spores of Bacillus subtilis by a new disinfectant, Sterilox®. J Appl Microbiol 91(6):1051–1058PubMedCrossRefGoogle Scholar
  72. 72.
    Venczel LV, Arrowood M, Hurd M, Sobsey MD (1997) Inactivation of Cryptosporidium parvum oocysts and Clostridium perfringens spores by a mixed-oxidant disinfectant and by free chlorine. Appl Environ Microbiol 63(4):1598–1601PubMedGoogle Scholar
  73. 73.
    Thorn RMS, Greenman J, Austin AJ (2005) In vitro method to assess the antimicrobial activity and potential efficacy of novel types of wound dressings. J Appl Microbiol 99(4):895–901PubMedCrossRefGoogle Scholar
  74. 74.
    Iwasawa A, Nakamura Y (1993) Antimicrobial activity of aqua oxidized water. Clin Bacteriol 20:469–473Google Scholar
  75. 75.
    Tatsumi H, Kuroda H, Takemoto T, Murai T (1994) Bactericidal effects of aqua oxidation water. Shika Igaku 57:403–407Google Scholar
  76. 76.
    Fabrizio KA, Sharma RR, Demirci A, Cutter CN (2002) Comparison of electrolyzed oxidizing water with various antimicrobial interventions to reduce Salmonella species on poultry. Poult Sci 81(10):1598–1605PubMedGoogle Scholar
  77. 77.
    Tapper RC, Smith JR, Cocking C, Beech IB (1998) Atomic force microscopy study of the biocidal effect of super-oxidised water, Sterilox. Biofilm 3(1):4Google Scholar
  78. 78.
    Zinkevich V, Beech IB, Tapper R, Bogdarina I (2000) The effect of super-oxidized water on Escherichia coli. J Hosp Infect 46(2):153–156PubMedCrossRefGoogle Scholar
  79. 79.
    Cloete TE, Thantsha MS, Maluleke MR, Kirkpatrick R (2009) The antimicrobial mechanism of electrochemically activated water against Pseudomonas aeruginosa and Escherichia coli as determined by SDS-PAGE analysis. J Appl Microbiol 107(2):379–384PubMedCrossRefGoogle Scholar
  80. 80.
    Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P (2000) Resistance of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev 64(3):548–572PubMedCrossRefGoogle Scholar
  81. 81.
    Setlow P (2000) Resistance of bacterial spores. In: Stortz G, Hengge-Aronis R (eds) Bacterial stress responses. ASM Press, Washington, pp 217–230Google Scholar
  82. 82.
    Rogers JV, Ducatte GR, Choi YW, Early PC (2006) A preliminary assessment of Bacillus anthracis spore inactivation using an electrochemically activated solution (ECASOL™). Lett Appl Microbiol 43(5):482–488PubMedCrossRefGoogle Scholar
  83. 83.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284(5418):1318–1322PubMedCrossRefGoogle Scholar
  84. 84.
    Mah T-FC, O’Toole GA (2001) Mechanisms of biofilm resistance to antimicrobial agents. Trends Microbiol 9(1):34–39PubMedCrossRefGoogle Scholar
  85. 85.
    Jefferson KK (2004) What drives bacteria to produce a biofilm? FEMS Microbiol Lett 236(2):163–173PubMedGoogle Scholar
  86. 86.
    Thantsha MS, Cloete TE (2006) The effect of sodium chloride and sodium bicarbonate derived anolytes, and anolyte–catholyte combination on biofilms. Water SA 32(2):237–242Google Scholar
  87. 87.
    Venkitanarayanan KS, Ezeike GO, Hung YC, Doyle MP (1999) Inactivation of Escherichia coli O157:H7 and Listeria monocytogenes on plastic kitchen cutting boards by electrolyzed oxidizing water. J Food Prot 62:857–860PubMedGoogle Scholar
  88. 88.
    Hata G, Uemura M, Weine FS, Toda T (1996) Removal of smear layer in the root canal using oxidative potential water. J Endod 22(12):643–645PubMedCrossRefGoogle Scholar
  89. 89.
    Marais JT, Brözel VS (1999) Electro-chemically activated water in dental unit water lines. Br Dent J 187(3):154–158PubMedGoogle Scholar
  90. 90.
    Lisle JT, Rose JB (1995) Cryptosporidium contamination of water in the USA and UK: a mini-review. Aqua 44:103–117Google Scholar
  91. 91.
    Suzuki T, Itakura J, Watanabe M, Ohta M, Sato Y, Yamaya Y (2002) Inactivation of staphylococcal enterotoxin-A with an electrolyzed anodic solution. J Agric Food Chem 50(1):230–234PubMedCrossRefGoogle Scholar
  92. 92.
    Tagawa M, Yamaguchi T, Yokosuka O, Matsutani S, Maeda T, Saisho H (2000) Inactivation of a hepadnavirus by electrolysed acid water. J Antimicrob Chemother 46(3):363–368PubMedCrossRefGoogle Scholar
  93. 93.
    Morita C, Sano K, Morimatsu S, Kiura H, Goto T, Kohno T, Hong WU, Miyoshi H, Iwasawa A, Nakamura Y, Tagawa M, Yokosuka O, Saisho H, Maeda T, Katsuoka Y (2000) Disinfection potential of electrolyzed solutions containing sodium chloride at low concentrations. J Virol Methods 85(1–2):163–174PubMedCrossRefGoogle Scholar
  94. 94.
    Park GW, Boston DM, Kase JA, Sampson MN, Sobsey MD (2007) Evaluation of liquid- and fog-based application of Sterilox hypochlorous acid solution for surface inactivation of human norovirus. Appl Environ Microbiol 73(14):4463–4468PubMedCrossRefGoogle Scholar
  95. 95.
    Kitano J, Kohno T, Sano K, Morita C, Yamaguchi M, Maeda T, Tanigawa N (2003) A novel electrolyzed sodium chloride solution for the disinfection of dried HIV-1. Bull Osaka Med Coll 48:29–36Google Scholar
  96. 96.
    Shimizu Y, Hurusawa T (1992) Antiviral, antibacterial, and antifungal actions of electrolyzed oxidizing water through electrolysis. Dental J 37:1055–1062Google Scholar
  97. 97.
    Kakimoto K, Hayashi K, Nakano T, Sano K, Shimokawa T, Nakai M (1997) Effects of electrolytic products of sodium chloride on HIV-1 infectivity and HBs immunoreactivity. Environ Infect 12:1–4Google Scholar
  98. 98.
    Imatanaka N, Yamasaki K, Shiraishi K, Kaziwara T, Nakayama T, Arai K (1994) Single dose and 28-day repeated dose oral toxicity studies of superoxidized water in rats. Phamacometrics 48(3):159–171Google Scholar
  99. 99.
    Morita C, Nishida T, Ito K (2011) Biological toxicity of acid electrolyzed functional water: effect of oral administration on mouse digestive tract and changes in body weight. Arch Oral Biol 56(4):359–366PubMedCrossRefGoogle Scholar
  100. 100.
    Ohtaki Y (1997) The safety of ESAAS. In: Kenkyukai W (ed) The basic knowledge of ESAAS. Ohmsha, Tokoyo, pp 73–89Google Scholar
  101. 101.
    Shiba A, Shiba K (1997) A handbook for electrolyzed acidic water. Igakujohosya, TokoyoGoogle Scholar
  102. 102.
    Tsuji S, Kawano S, Oshita M, Ohmae A, Shinomura Y, Miyazaki Y, Hiraoka S, Matsuzawa Y, Kamada T, Hori M, Maeda T (1999) Endoscope disinfection using acidic electrolytic water. Endoscopy 31(7):528–535PubMedCrossRefGoogle Scholar
  103. 103.
    Marais JT (2002) Biocompatibility of electrochemically aqueous activated solutions: an animal study. SADJ 57(1):12–16PubMedGoogle Scholar
  104. 104.
    Iwasawa A, Nakamura Y (2003) Cytotoxic effect of antiseptics: comparison in vitro. In vivo examination of strong acidic electrolyzed water, povidone–iodine, chlorhexidine and benzalkonium chloride. Kansenshogaku Zasshi 77(5):316–322PubMedGoogle Scholar
  105. 105.
    Shimmura S, Matsumoto K, Yaguchi H, Okuda T, Miyajima S, Negi A, Shimazaki J, Tsubot K (2000) Acidic electrolysed water in the disinfection of the ocular surface. Exp Eye Res 70(1):1–6PubMedCrossRefGoogle Scholar
  106. 106.
    Katsuragi H, Suzuki A, Nagaso K, Okamura K, Saito K (1996) Cytotoxicity of aqua-oxidized water. Jpn J Oral Biol 38:57–64CrossRefGoogle Scholar
  107. 107.
    Serper A, Calt S, Dogan AL, Guc D, Ozçelik B, Kuraner T (2001) Comparison of the cytotoxic effects and smear layer removing capacity of oxidative potential water, NaOCl and EDTA. J Oral Sci 43(4):233–238PubMedCrossRefGoogle Scholar
  108. 108.
    Ayebah B, Hung Y-C (2005) Electrolyzed water and its corrosiveness on various surface materials commonly found in food processing facilities. J Food Process Eng 28(3):247–264CrossRefGoogle Scholar
  109. 109.
    Sekiya S, Ohmori K, Harii K (1997) Treatment of infectious skin defects or ulcers with electrolyzed strong acid aqueous solution. Artif Organs 21(1):32–38PubMedCrossRefGoogle Scholar
  110. 110.
    Nakae H, Inaba H (2000) Effectiveness of electrolyzed oxidized water irrigation in a burn-wound infection model. J Trauma 49(3):511–514PubMedCrossRefGoogle Scholar
  111. 111.
    Nakae H, Inaba H (2000) Electrolyzed strong acid aqueous solution irrigation promotes wound healing in a burn wound model. Artif Organs 24(7):544–546PubMedCrossRefGoogle Scholar
  112. 112.
    Altamirano AM (2006) Reducing bacterial infectious complications from burn wounds. Wounds 16(S1):17–19Google Scholar
  113. 113.
    Horita Y, Miyazaki M, Noguchi M, Tadokoro M, Taura K, Ozono Y, Kohno S (2000) Healing of Fournier’s gangrene of the scrotum in a haemodialysis patient after conservative therapy alone. Nephrol Dial Transpl 15(3):419–421CrossRefGoogle Scholar
  114. 114.
    Dalla Paola L (2006) Treating diabetic foot ulcers with super-oxidized water. Wounds 18(S1):14–16Google Scholar
  115. 115.
    Selkon JB, Cherry GW, Wilson JM, Hughes MA (2006) Evaluation of hypochlorous acid washes in the treatment of chronic venous leg ulcers. J Wound Care 15(1):33–37PubMedGoogle Scholar
  116. 116.
    Allie D (2006) Super-oxidized dermacyn in lower-extremity wounds. Wounds 18(S1):3–6Google Scholar
  117. 117.
    Bongiovanni CM (2006) Superoxidized Water Improves Wound Care Outcomes in Diabetic Patients. Diabetic Microvascular Complications Today, May–June, pp. 11–14Google Scholar
  118. 118.
    Hadi SF, Khaliq T, Bilal N, Sikandar I, Saaiq M, Zubair M, Aurangzeb S (2007) Treating infected diabetic wounds with superoxidized water as anti-septic agent: a preliminary experience. J Coll Physicians Surg Pak 17:740–743PubMedGoogle Scholar
  119. 119.
    Wolvos TA (2006) Advanced wound care with stable, super-oxidized water. Wounds 18(S1):11–13Google Scholar
  120. 120.
    Dalla Paola L, Brocco E, Senesi A, Ninkovic S, Mericvo M, De Vido D (2005) Use of Dermacyn, a new antiseptic agent for the local treatment of diabetic foot ulcers. J Wound Healing 2:201Google Scholar
  121. 121.
    Piaggesi A, Goretti C, Mazzurco S, Tascini C, Leonildi A, Rizzo L, Tedeschi A, Gemignani G, Menichetti F, Del Prato S (2010) A randomized controlled trial to examine the efficacy and safety of a new super-oxidized solution for the management of wide postsurgical lesions of the diabetic foot. Int J Low Extrem Wounds 9(1):10–15PubMedCrossRefGoogle Scholar
  122. 122.
    Ohno H, Higashidate M, Yokosuka T (2000) Mediastinal irrigation with superoxidized water after open-heart surgery: the safety and pitfalls of cardiovascular surgical application. Surg Today 30(11):1055–1056PubMedCrossRefGoogle Scholar
  123. 123.
    Ichihara T, Fujii G, Eda T, Sasaki M, Ueda Y (2004) The efficacy of function water (electrolyzed strong acid solution) on open heart surgery; postoperative mediastinitis due to methicillin-resistant Staphylococcus aureus. Kyobu Geka 57(12):1110–1112PubMedGoogle Scholar
  124. 124.
    Desai A, Tam CJ, Bhakta K, Desai T, Sarkar R, Desai NB (2004) The efficacy and tolerability of electrolyzed oxidized water in treating mild to moderate acne. Cosmet Dermatol 17(2):93–105Google Scholar
  125. 125.
    Ito K, Nishida T, Murai S (1996) Inhibitory effects of acid water prepared by an electrolysis apparatus on early plaque formation on specimens of dentine. J Clin Periodontol 23(5):471–476PubMedCrossRefGoogle Scholar
  126. 126.
    Solovyeva AM, Dummer PMH (2000) Cleaning effectiveness of root canal irrigation with electrochemically activated anolyte and catholyte solutions: a pilot study. Int Endod J 33(6):494–504PubMedCrossRefGoogle Scholar
  127. 127.
    Marais JT, Williams WP (2001) Antimicrobial effectiveness of electro-chemically activated water as an endodontic irrigation solution. Int Endod J 34(3):237–243PubMedCrossRefGoogle Scholar
  128. 128.
    Hope CK, Garton SG, Wang Q, Burnside G, Farrelly PJ (2010) A direct comparison between extracted tooth and filter-membrane biofilm models of endodontic irrigation using Enterococcus faecalis. Arch Microbiol 192(9):775–781PubMedCrossRefGoogle Scholar
  129. 129.
    Hata G, Hayami S, Weine FS, Toda T (2001) Effectiveness of oxidative potential water as a root canal irrigant. Int Endod J 34(4):308–317PubMedCrossRefGoogle Scholar
  130. 130.
    Fraise AP (1999) Choosing disinfectants. J Hosp Infect 43(4):255–264PubMedCrossRefGoogle Scholar
  131. 131.
    Walker JT, Bradshaw DJ, Fulford MR, Marsh PD (2003) Microbiological evaluation of a range of disinfectant products to control mixed-species biofilm contamination in a laboratory model of a dental unit water system. Appl Environ Microbiol 69(6):3327–3332PubMedCrossRefGoogle Scholar
  132. 132.
    Kramer A, Schwebke I, Kampf G (2006) How long do nosocomial pathogens persist on inanimate surfaces? A systematic review. BMC Infect Dis 6:130PubMedCrossRefGoogle Scholar
  133. 133.
    Clark J, Barrett SP, Rogers M, Stapleton R (2006) Efficacy of super-oxidized water fogging in environmental decontamination. J Hosp Infect 64(4):386–390PubMedCrossRefGoogle Scholar
  134. 134.
    Prince EL, Muir AVG, Thomas WM, Stollard RJ, Sampson M, Lewis JA (2002) An evaluation of the efficacy of Aqualox for microbiological control of industrial cooling tower systems. J Hosp Infect 52(4):243–249PubMedCrossRefGoogle Scholar
  135. 135.
    Brown CM, Nuorti PJ, Breiman RF, Hathcock AL, Fields BS, Lipman HB, Llewellyn GC, Hofmann J, Cetron M (1999) A community outbreak of Legionnaires’ disease linked to hospital cooling towers: an epidemiological method to calculate dose of exposure. Int J Epidemiol 28:353–359PubMedCrossRefGoogle Scholar
  136. 136.
    Yoh M, Akiyama Y, Shimokawa T, Honda T (1994) Flow water hand washing with electrolytic product of sodium chloride. J Jap Soc Environ Infect 9:20–23Google Scholar
  137. 137.
    Otoguro K, Suzuki F, Akimaru Y, Iijima H, Yajima Y, Uebaba K (1996) Hand disinfectant activities of two kinds of electrolyzed acid aqueous solutions by globe juice method. Envir Toxicol Water Quality 11:117–122Google Scholar
  138. 138.
    Izumi R, Shimaoka M, Nagaoka C, Komaki M, Mizutani A, Yoh M, Honda T, Taenaka N, Yoshiya I (1998) The effectiveness of hand-disinfection by a flow water system using electrolytic products of sodium chloride, compared with a conventional method using alcoholic solution in an intensive care unit. Crit Care 2:79–80CrossRefGoogle Scholar
  139. 139.
    Sakashita M, Iwasawa A, Nakamura Y (2002) Antimicrobial effects and efficacy on habitually hand-washing of strong acidic electrolyzed water—a comparative study of alcoholic antiseptics and soap and tap water. Kansenshogaku Zasshi 76(5):373–377PubMedGoogle Scholar
  140. 140.
    Grunwald L (2010) European legislation: Biocide product authorisation and the revision of the BPD. Society for Applied Microbiology Winter Meeting, Royal SocietyGoogle Scholar
  141. 141.
    Rutala W, Weber D (2008) Guideline for disinfection and sterilization in healthcare facilities, 2008. Centers for Disease Control and Prevention (CDC). Healthcare Infection Control Practices Advisory Committee (HIPAC)Google Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • R. M. S. Thorn
    • 1
  • S. W. H. Lee
    • 1
  • G. M. Robinson
    • 1
  • J. Greenman
    • 1
  • D. M. Reynolds
    • 1
    Email author
  1. 1.Centre for Research in Biosciences, Department of Applied SciencesUniversity of the West of England, Frenchay CampusBristolUK

Personalised recommendations