Candida and invasive candidiasis: back to basics

  • C. S.-Y. Lim
  • R. Rosli
  • H. F. Seow
  • P. P. Chong
Review

Abstract

The ubiquitous Candida spp. is an opportunistic fungal pathogen which, despite treatment with antifungal drugs, can cause fatal bloodstream infections (BSIs) in immunocompromised and immunodeficient persons. Thus far, several major C. albicans virulence factors have been relatively well studied, including morphology switching and secreted degradative enzymes. However, the exact mechanism of Candida pathogenesis and the host response to invasion are still not well elucidated. The relatively recent discovery of the quorum-sensing molecule farnesol and the existence of quorum sensing as a basic regulatory phenomenon of the C. albicans population behavior has revolutionized Candida research. Through population density regulation, the quorum-sensing mechanism also controls the cellular morphology of a C. albicans population in response to environmental factors, thereby, effectively placing morphology switching downstream of quorum sensing. Thus, the quorum-sensing phenomenon has been hailed as the ‘missing piece’ of the pathogenicity puzzle. Here, we review what is known about Candida spp. as the etiological agents of invasive candidiasis and address our current understanding of the quorum-sensing phenomenon in relation to virulence in the host.

References

  1. 1.
    Kurtzman CP, Fell JW (1998) The yeasts: a taxonomic study, 4th edn. Elsevier Science BV, Amsterdam, The NetherlandsGoogle Scholar
  2. 2.
    Calderone RA (2002) Candida and candidiasis. ASM Press, Washington, DCGoogle Scholar
  3. 3.
    Chibana H, Oka N, Nakayama H, Aoyama T, Magee BB, Magee PT, Mikami Y (2005) Sequence finishing and gene mapping for Candida albicans chromosome 7 and syntenic analysis against the Saccharomyces cerevisiae genome. Genetics 170:1525–1537PubMedCrossRefGoogle Scholar
  4. 4.
    Odds FC (1988) Candida and candidosis, 3rd edn. Balliere Tindall, LondonGoogle Scholar
  5. 5.
    Larriba G, Rubio Coque JJ, Ciudad A, Andaluz E (2000) Candida albicans molecular biology reaches its maturity. Int Microbiol 3:247–252PubMedGoogle Scholar
  6. 6.
    Sudbery P, Gow N, Berman J (2004) The distinct morphogenic states of Candida albicans. Trends Microbiol 12:317–324PubMedCrossRefGoogle Scholar
  7. 7.
    Parker JC Jr, McCloskey JJ, Knauer KA (1976) Pathobiologic features of human candidiasis. A common deep mycosis of the brain, heart and kidney in the altered host. Am J Clin Pathol 65:991–1000PubMedGoogle Scholar
  8. 8.
    Pfaller MA (1996) Nosocomial candidiasis: emerging species, reservoirs, and modes of transmission. Clin Infect Dis 22:S89–S94PubMedCrossRefGoogle Scholar
  9. 9.
    Ramage G, Saville SP, Thomas DP, López-Ribot JL (2005) Candida biofilms: an update. Eukaryot Cell 4:633–638PubMedCrossRefGoogle Scholar
  10. 10.
    Pfaller MA, Diekema DJ (2004) Rare and emerging opportunistic fungal pathogens: concern for resistance beyond Candida albicans and Aspergillus fumigatus. J Clin Microbiol 42:4419–4431PubMedCrossRefGoogle Scholar
  11. 11.
    Pfaller MA, Diekema DJ (2007) Epidemiology of invasive candidiasis: a persistent public health problem. Clin Microbiol Rev 20:133–163PubMedCrossRefGoogle Scholar
  12. 12.
    Pendrak ML, Yan SS, Roberts DD (2004) Sensing the host environment: recognition of hemoglobin by the pathogenic yeast Candida albicans. Arch Biochem Biophys 426:148–156PubMedCrossRefGoogle Scholar
  13. 13.
    Wisplinghoff H, Bischoff T, Tallent SM, Seifert H, Wenzel RP, Edmond MB (2004) Nosocomial bloodstream infections in US hospitals: analysis of 24,179 cases from a prospective nationwide surveillance study. Clin Infect Dis 39:309–317PubMedCrossRefGoogle Scholar
  14. 14.
    Wilson LS, Reyes CM, Stolpman M, Speckman J, Allen K, Beney J (2002) The direct cost and incidence of systemic fungal infections. Value Health 5:26–34PubMedCrossRefGoogle Scholar
  15. 15.
    Hajjeh RA, Sofair AN, Harrison LH, Lyon GM, Arthington-Skaggs BA, Mirza SA, Phelan M, Morgan J, Lee-Yang W, Ciblak MA, Benjamin LE, Sanza LT, Huie S, Yeo SF, Brandt ME, Warnock DW (2004) Incidence of bloodstream infections due to Candida species and in vitro susceptibilities of isolates collected from 1998 to 2000 in a population-based active surveillance program. J Clin Microbiol 42:1519–1527PubMedCrossRefGoogle Scholar
  16. 16.
    Todischini GT (1997) Treatment of candidiasis: a perspective on recent advances and future challenges. Int J Infect Dis 1(Suppl):S37–S41Google Scholar
  17. 17.
    Boos C, Kujath P, Bruch HP (2005) Intra-abdominal mycoses. Mycoses 48(Suppl 1):22–26PubMedCrossRefGoogle Scholar
  18. 18.
    Fischer L, Sterneck M (2005) Invasive fungal infections in patients after liver transplantation. Mycoses 48(Suppl 1):27–35PubMedCrossRefGoogle Scholar
  19. 19.
    Yap HY, Kwok KM, Gomersall CD, Fung SC, Lam TC, Leung PN, Hui M, Joynt GM (2009) Epidemiology and outcome of Candida bloodstream infection in an intensive care unit in Hong Kong. Hong Kong Med J 15:255–261PubMedGoogle Scholar
  20. 20.
    Yang CW, Barkham TMS, Chan FY, Wang Y (2003) Prevalence of Candida species, including Candida dubliniensis, in Singapore. J Clin Microbiol 41:472–474PubMedCrossRefGoogle Scholar
  21. 21.
    Cheng MF, Yu KW, Tang RB, Fan YH, Yang YL, Hsieh KS, Ho M, Lo HJ (2004) Distribution and antifungal susceptibility of Candida species causing candidemia from 1996 to 1999. Diagn Microbiol Infect Dis 48:33–37PubMedCrossRefGoogle Scholar
  22. 22.
    Takakura S, Fujihara N, Saito T, Kudo T, Iinuma Y, Ichiyama S; The Japanese Invasive Mycoses Surveillance Study Group (2004) National surveillance of species distribution in blood isolates of Candida species in Japan and their susceptibility to six antifungal agents including voriconazole and micafungin. J Antimicrob Chemoth 53:283–289CrossRefGoogle Scholar
  23. 23.
    Foongladda S, Sakulmaiwatana P, Petlum P, Vanprapar N (2004) Candida species, genotypes and antifungal susceptibility of Candida isolates from blood samples of patients at the largest tertiary care hospital in Thailand during 1999–2002. J Med Assoc Thai 87:92–99PubMedGoogle Scholar
  24. 24.
    Ng KP, Saw TL, Na SL, Soo-Hoo TS (2001) Systemic Candida infection in University Hospital 1997–1999: the distribution of Candida biotypes and antifungal susceptibility patterns. Mycopathologia 149:141–146PubMedCrossRefGoogle Scholar
  25. 25.
    Calderone RA, Fonzi WA (2001) Virulence factors of Candida albicans. Trends Microbiol 9:327–335PubMedCrossRefGoogle Scholar
  26. 26.
    Berman J, Sudbery PE (2002) Candida albicans: a molecular revolution built on lessons from budding yeast. Nat Rev Genet 3:918–930PubMedCrossRefGoogle Scholar
  27. 27.
    Kumamoto CA, Vinces MD (2005) Alternative Candida albicans lifestyles: growth on surfaces. Annu Rev Microbiol 59:113–133PubMedCrossRefGoogle Scholar
  28. 28.
    Gaur NK, Klotz SA, Henderson RL (1999) Overexpression of the Candida albicans ALA1 gene in Saccharomyces cerevisiae results in aggregation following attachment of yeast cells to extracellular matrix proteins, adherence properties similar to those of Candida albicans. Infect Immun 67:6040–6047PubMedGoogle Scholar
  29. 29.
    Chaffin WL, López-Ribot JL, Casanova M, Gozalbo D, Martínez JP (1998) Cell wall and secreted proteins of Candida albicans: Identification, function, and expression. Microbiol Mol Biol Rev 62:130–180PubMedGoogle Scholar
  30. 30.
    Gow NA (1997) Germ tube growth of Candida albicans. Curr Top Med Mycol 8:43–55PubMedGoogle Scholar
  31. 31.
    Brown DH Jr, Giusani AD, Chen X, Kumamoto CA (1999) Filamentous growth of Candida albicans in response to physical environmental cues and its regulation by the unique CZF1 gene. Mol Microbiol 34:651–662PubMedCrossRefGoogle Scholar
  32. 32.
    Fukazawa Y, Kagaya K (1997) Molecular bases of adhesion of Candida albicans. J Med Vet Mycol 35:87–99PubMedCrossRefGoogle Scholar
  33. 33.
    Ghannoum MA, Burns GR, Abu Elteen K, Radwan SS (1986) Experimental evidence for the role of lipids in adherence of Candida spp. to human buccal epithelial cells. Infect Immun 54:189–193PubMedGoogle Scholar
  34. 34.
    Fu Y, Rieg G, Fonzi WA, Belanger PH, Edwards JE Jr, Filler SG (1998) Expression of the Candida albicans gene ALS1 in Saccharomyces cerevisiae induces adherence to endothelial and epithelial cells. Infect Immun 66:1783–1786PubMedGoogle Scholar
  35. 35.
    Staab JF, Bradway SD, Fidel PL, Sundstrom P (1999) Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwp1. Science 283:1535–1538PubMedCrossRefGoogle Scholar
  36. 36.
    Ghannoum MA (2000) Potential role of phospholipases in virulence and fungal pathogenesis. Clin Microbiol Rev 13:122–143PubMedCrossRefGoogle Scholar
  37. 37.
    Monod M, Hube B, Hess D, Sanglard D (1998) Differential regulation of SAP8 and SAP9, which encode two new members of the secreted aspartic proteinase family in Candida albicans. Microbiology 144:2731–2737PubMedCrossRefGoogle Scholar
  38. 38.
    Crampin H, Finley K, Gerami-Nejad M, Court H, Gale C, Berman J, Sudbery P (2005) Candida albicans hyphae have a Spitzenkörper that is distinct from the polarisome found in yeast and pseudohyphae. J Cell Sci 118:2935–2947PubMedCrossRefGoogle Scholar
  39. 39.
    Hazan I, Sepulveda-Becerra M, Liu H (2002) Hyphal elongation is regulated independently of cell cycle in Candida albicans. Mol Biol Cell 13:134–145PubMedCrossRefGoogle Scholar
  40. 40.
    Saville SP, Lazzell AL, Monteagudo C, Lopez-Ribot JL (2003) Engineered control of cell morphology in vivo reveals distinct roles for yeast and filamentous forms of Candida albicans during infection. Eukaryot Cell 2:1053–1060PubMedCrossRefGoogle Scholar
  41. 41.
    Kruppa M (2009) Quorum sensing and Candida albicans. Mycoses 52:1–10PubMedCrossRefGoogle Scholar
  42. 42.
    Lo HJ, Köhler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink G (1997) Nonfilamentous C. albicans mutants are avirulent. Cell 90:939–949PubMedCrossRefGoogle Scholar
  43. 43.
    Stoldt VR, Sonneborn A, Leuker CE, Ernst JF (1997) Efg1p, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 16:1982–1991PubMedCrossRefGoogle Scholar
  44. 44.
    Lane S, Birse C, Zhou S, Matson R, Liu H (2001) DNA array studies demonstrate convergent regulation of virulence factors by Cph1, Cph2, and Efg1 in Candida albicans. J Biol Chem 276:48988–48996PubMedCrossRefGoogle Scholar
  45. 45.
    El Barkani A, Kurzai O, Fonzi WA, Ramon A, Porta A, Frosch M, Mühlschlegel FA (2000) Dominant active alleles of RIM101 (PRR2) bypass the pH restriction on filamentation of Candida albicans. Mol Cell Biol 20:4635–4647PubMedCrossRefGoogle Scholar
  46. 46.
    Braun BR, Johnson AD (1997) Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277:105–109PubMedCrossRefGoogle Scholar
  47. 47.
    Braun BR, Johnson AD (2000) TUP1, CPH1 and EFG1 make independent contributions to filamentation in Candida albicans. Genetics 155:57–67PubMedGoogle Scholar
  48. 48.
    Braun BR, Kadosh D, Johnson AD (2001) NRG1, a repressor of filamentous growth in C. albicans, is down-regulated during filament induction. EMBO J 20:4753–4761PubMedCrossRefGoogle Scholar
  49. 49.
    Kadosh D, Johnson AD (2005) Induction of the Candida albicans filamentous growth program by relief of transcriptional repression: a genome-wide analysis. Mol Biol Cell 16:2903–2912PubMedCrossRefGoogle Scholar
  50. 50.
    Murad AMA, Leng P, Straffon M, Wishart J, Macaskill S, MacCallum D, Schnell N, Talibi D, Marechal D, Tekaia F, d’Enfert C, Gaillardin C, Odds FC, Brown AJP (2001) NRG1 represses yeast–hypha morphogenesis and hypha-specific gene expression in Candida albicans. EMBO J 20:4742–4752PubMedCrossRefGoogle Scholar
  51. 51.
    Ishii N, Yamamoto M, Yoshihara F, Arisawa M, Aoki Y (1997) Biochemical and genetic characterization of Rbf1p, a putative transcription factor of Candida albicans. Microbiology 143:429–435PubMedCrossRefGoogle Scholar
  52. 52.
    Feng Q, Summers E, Guo B, Fink G (1999) Ras signaling is required for serum-induced hyphal differentiation in Candida albicans. J Bacteriol 181:6339–6346PubMedGoogle Scholar
  53. 53.
    Brown AJP (2002) Morphogenetic signaling pathways in Candida albicans. In: Calderone RA (ed) Candida and candidiasis. ASM Press, Washington, DC, pp 95–106Google Scholar
  54. 54.
    Zheng X, Wang Y, Wang Y (2004) Hgc1, a novel hypha-specific G1 cyclin-related protein regulates Candida albicans hyphal morphogenesis. EMBO J 23:1845–1856PubMedCrossRefGoogle Scholar
  55. 55.
    Kobayashi SD, Cutler JE (1998) Candida albicans hyphal formation and virulence: is there a clearly defined role? Trends Microbiol 6:92–94PubMedCrossRefGoogle Scholar
  56. 56.
    Chandra J, Kuhn DM, Mukherjee PK, Hoyer LL, McCormick T, Ghannoum MA (2001) Biofilm formation by the fungal pathogen Candida albicans: development, architecture, and drug resistance. J Bacteriol 183:5385–5394PubMedCrossRefGoogle Scholar
  57. 57.
    Leonhardt A, Renvert S, Dahlén G (1999) Microbial findings at failing implants. Clin Oral Implants Res 10:339–345PubMedCrossRefGoogle Scholar
  58. 58.
    Baillie GS, Douglas LJ (1999) Role of dimorphism in the development of Candida albicans biofilms. J Med Microbiol 48:671–679PubMedCrossRefGoogle Scholar
  59. 59.
    Ramage G, Vandewalle K, Wickes BL, López-Ribot JL (2001) Characteristics of biofilm formation by Candida albicans. Rev Iberoem Micol 18:163–170Google Scholar
  60. 60.
    Kulkarni RV, Nickerson KW (1981) Nutritional control of dimorphism in Ceratocystis ulmi. Exp Mycol 5:148–154CrossRefGoogle Scholar
  61. 61.
    Lingappa BT, Prasad M, Lingappa Y, Hunt DF, Biemann K (1969) Phenethyl alcohol and tryptophol: autoantibiotics produced by the fungus Candida albicans. Science 163:192–194PubMedCrossRefGoogle Scholar
  62. 62.
    Hazen KC, Cutler JE (1979) Autoregulation of germ tube formation by Candida albicans. Infect Immun 24:661–666PubMedGoogle Scholar
  63. 63.
    Hazen KC, Cutler JE (1983) Isolation and purification of morphogenic autoregulatory substance produced by Candida albicans. J Biochem 94:777–783PubMedGoogle Scholar
  64. 64.
    Hornby JM, Jensen EC, Lisec AD, Tasto JJ, Jahnke B, Shoemaker R, Dussault P, Nickerson KW (2001) Quorum sensing in the dimorphic fungus Candida albicans is mediated by farnesol. Appl Environ Microbiol 67:2982–2992PubMedCrossRefGoogle Scholar
  65. 65.
    Chen H, Fujita M, Feng Q, Clardy J, Fink GR (2004) Tyrosol is a quorum-sensing molecule in Candida albicans. Proc Natl Acad Sci USA 101:5048–5052PubMedCrossRefGoogle Scholar
  66. 66.
    Nickerson KW, Atkin AL, Hornby JM (2006) Quorum sensing in dimorphic fungi: farnesol and beyond. Appl Environ Microbiol 72:3805–3813PubMedCrossRefGoogle Scholar
  67. 67.
    Hogan DA, Vik A, Kolter R (2004) A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223PubMedCrossRefGoogle Scholar
  68. 68.
    Lim CSY, Wong WF, Rosli R, Ng KP, Seow HF, Chong PP (2009) 2-dodecanol (decyl methyl carbinol) inhibits hyphal formation and SIR2 expression in C. albicans. J Basic Microbiol 49:579–583PubMedCrossRefGoogle Scholar
  69. 69.
    Park H, Myers CL, Sheppard DC, Phan QT, Sanchez AA, Edwards JE Jr, Filler SG (2005) Role of the fungal Ras-protein kinase A pathway in governing epithelial cell interactions during oropharyngeal candidiasis. Cell Microbiol 7:499–510PubMedCrossRefGoogle Scholar
  70. 70.
    Hornby JM, Nickerson KW (2004) Enhanced production of farnesol by Candida albicans treated with four azoles. Antimicrob Agents Chemother 48:2305–2307PubMedCrossRefGoogle Scholar
  71. 71.
    Navarathna DHMLP, Hornby JM, Hoerrmann N, Parkhurst AM, Duhamel GE, Nickerson KW (2005) Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. J Antimicrob Chemother 56:1156–1159PubMedCrossRefGoogle Scholar
  72. 72.
    Navarathna DHMLP, Hornby JM, Krishnan N, Parkhurst A, Duhamel GE, Nickerson KW (2007) Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. Infect Immun 75:1609–1618PubMedCrossRefGoogle Scholar
  73. 73.
    Navarathna DHMLP, Nickerson KW, Duhamel GE, Jerrels TR, Petro TM (2007) Exogenous farnesol interferes with the normal progression of cytokine expression during candidiasis in a mouse model. Infect Immun 75:4006–4011PubMedCrossRefGoogle Scholar
  74. 74.
    Davis-Hanna A, Piispanen AE, Stateva LI, Hogan DA (2008) Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. Mol Microbiol 67:47–62PubMedCrossRefGoogle Scholar
  75. 75.
    Rocha CRC, Schröppel K, Harcus D, Marcil A, Dignard D, Taylor BN, Thomas DY, Whiteway M, Leberer E (2001) Signaling through adenylyl cyclase is essential for hyphal growth and virulence in the pathogenic fungus Candida albicans. Mol Biol Cell 12:3631–3643PubMedGoogle Scholar
  76. 76.
    Cho T, Hamatake H, Kaminishi H, Hagihara Y, Watanabe K (1992) The relationship between cyclic adenosine 3′,5′-monophosphate and morphology in exponential phase Candida albicans. J Med Vet Mycol 30:35–42PubMedCrossRefGoogle Scholar
  77. 77.
    Maydan M, Eskandarian M, Serneels J, Tournu H, Van Dijck P (2005) Methionine-induced morphogenesis in Candida albicans is dependent on the methionine permease Mup1 and the G-protein coupled receptor Gpr1. FEBS advanced lecture course on human fungal pathogens, 1st ed. Molecular Microbiology and Biotechnology Section, La Colle sur Loup, France, miscellaneous.Google Scholar
  78. 78.
    Castilla R, Passeron S, Cantore ML (1998) N-acetyl-D-glucosamine induces germination in Candida albicans through a mechanism sensitive to inhibitors of cAMP-dependent protein kinase. Cell Signal 10:713–719PubMedCrossRefGoogle Scholar
  79. 79.
    Leberer E, Harcus D, Dignard D, Johnson L, Ushinsky S, Thomas DY, Schröppel K (2001) Ras links cellular morphogenesis to virulence by regulation of the MAP kinase and cAMP signalling pathways in the pathogenic fungus Candida albicans. Mol Microbiol 42:673–687PubMedCrossRefGoogle Scholar
  80. 80.
    Hube B (2004) From commensal to pathogen: stage- and tissue-specific gene expression of Candida albicans. Curr Opin Microbiol 7:336–341PubMedCrossRefGoogle Scholar
  81. 81.
    Odds FC (1994) Candida and candidosis. A review and bibliography. Balliere Tindall, LondonGoogle Scholar
  82. 82.
    Fradin C, De Groot P, MacCallum D, Schaller M, Klis F, Odds FC, Hube B (2005) Granulocytes govern the transcriptional response, morphology and proliferation of Candida albicans in human blood. Mol Microbiol 56:397–415PubMedCrossRefGoogle Scholar
  83. 83.
    Grubb SEW, Murdoch C, Sudbery PE, Saville SP, Lopez-Ribot JL, Thornhill MH (2008) Candida albicans–endothelial cell interactions: A key step in the pathogenesis of systemic candidiasis. Infect Immun 76:4370–4377PubMedCrossRefGoogle Scholar
  84. 84.
    Orozco AS, Zhou X, Filler SG (2000) Mechanisms of the proinflammatory response of endothelial cells to Candida albicans infection. Infect Immun 68:1134–1141PubMedCrossRefGoogle Scholar
  85. 85.
    Filler SG (2006) Candida–host cell receptor–ligand interactions. Curr Opin Microbiol 9:333–339PubMedCrossRefGoogle Scholar
  86. 86.
    Filler SG, Sheppard DC (2006) Fungal invasion of normally non-phagocytic host cells. PLoS Pathog 2:e129. doi:10.1371/journal.ppat.0020129 PubMedCrossRefGoogle Scholar
  87. 87.
    Nadir E, Kaufshtein M (2005) Images in clinical medicine. Candida albicans in a peripheral-blood smear. N Engl J Med 353:e9PubMedCrossRefGoogle Scholar
  88. 88.
    Villar CC, Kashleva H, Mitchell AP, Dongari-Bagtzoglou A (2005) Invasive phenotype of Candida albicans affects the host proinflammatory response to infection. Infect Immun 73:4588–4595PubMedCrossRefGoogle Scholar
  89. 89.
    Phan QT, Belanger PH, Filler SG (2000) Role of hyphal formation in interactions of Candida albicans with endothelial cells. Infect Immun 68:3485–3490PubMedCrossRefGoogle Scholar
  90. 90.
    Barker KS, Park H, Phan QT, Xu L, Homayouni R, Rogers PD, Filler SG (2008) Transcriptome profile of the vascular endothelial cell response to Candida albicans. J Infect Dis 198:193–202PubMedCrossRefGoogle Scholar
  91. 91.
    Kim HS, Choi EH, Khan J, Roilides E, Francesconi A, Kasai M, Sein T, Schaufele RL, Sakurai K, Son CG, Greer BT, Chanock S, Lyman CA, Walsh TJ (2005) Expression of genes encoding innate host defense molecules in normal human monocytes in response to Candida albicans. Infect Immun 73:3714–3724PubMedCrossRefGoogle Scholar
  92. 92.
    Barker KS, Liu T, Rogers PD (2005) Coculture of THP-1 human mononuclear cells with Candida albicans results in pronounced changes in host gene expression. J Infect Dis 192:901–912PubMedCrossRefGoogle Scholar
  93. 93.
    Huang C, Levitz SM (2000) Stimulation of macrophage inflammatory protein-1α, macrophage inflammatory protein-1β, and RANTES by Candida albicans and Cryptococcus neoformans in peripheral blood mononuclear cells from persons with and without human immunodeficiency virus infection. J Infect Dis 181:791–794PubMedCrossRefGoogle Scholar
  94. 94.
    Aybay C, Imir T (1996) Tumor necrosis factor (TNF) induction from monocyte/macrophages by Candida species. Immunobiology 196:363–374PubMedCrossRefGoogle Scholar
  95. 95.
    Trinchieri G (1995) The two faces of interleukin 12: a pro-inflammatory cytokine and a key immunoregulatory molecule produced by antigen-presenting cells. Ciba Found Symp 195:203–214PubMedGoogle Scholar
  96. 96.
    Xiong J, Kang K, Liu L, Yoshida Y, Cooper KD, Ghannoum MA (2000) Candida albicans and Candida krusei differentially induce human blood mononuclear cell interleukin-12 and gamma interferon production. Infect Immun 68:2464–2469PubMedCrossRefGoogle Scholar
  97. 97.
    Fidel PL Jr (2002) Distinct protective host defenses against oral and vaginal candidiasis. Med Mycol 40:359–375PubMedCrossRefGoogle Scholar
  98. 98.
    Fidel PL Jr (2002) The protective immune response against vaginal candidiasis: lessons learned from clinical studies and animal models. Int Rev Immunol 21:515–548PubMedCrossRefGoogle Scholar
  99. 99.
    van der Graaf CAA, Netea MG, Verschueren I, van der Meer JWM, Kullberg BJ (2005) Differential cytokine production and Toll-like receptor signaling pathways by Candida albicans blastoconidia and hyphae. Infect Immun 73:7458–7464PubMedCrossRefGoogle Scholar
  100. 100.
    Vazquez-Torres A, Jones-Carson J, Wagner RD, Warner T, Balish E (1999) Early resistance of interleukin-10 knockout mice to acute systemic candidiasis. Infect Immun 67:670–674PubMedGoogle Scholar
  101. 101.
    Evans ZA (1981) Tissue responses to the blastospores and hyphae of Candida albicans in the mouse. J Med Microbiol 14:307–319PubMedCrossRefGoogle Scholar
  102. 102.
    Grubb SEW, Murdoch C, Sudbery PE, Saville SP, Lopez-Ribot JL, Thornhill MH (2009) Adhesion of Candida albicans to endothelial cells under physiological conditions of flow. Infect Immun 77:3872–3878PubMedCrossRefGoogle Scholar
  103. 103.
    Bendel CM, Hess DJ, Garni RM, Henry-Stanley M, Wells CL (2003) Comparative virulence of Candida albicans yeast and filamentous forms in orally and intravenously inoculated mice. Crit Care Med 31:501–507PubMedCrossRefGoogle Scholar
  104. 104.
    Chen CG, Yang YL, Cheng HH, Su CL, Huang SF, Chen CT, Liu YT, Su IJ, Lo HJ (2006) Non-lethal Candida albicans cph1/cph1 efg1/efg1 transcription factor mutant establishing restricted zone of infection in a mouse model of systemic infection. Int J Immunopathol Pharmacol 19:561–565PubMedGoogle Scholar
  105. 105.
    Spellberg BJ, Johnston DA, Phan QT, Edwards JE Jr, French SW, Ibrahim AS, Filler SG (2003) Parenchymal organ, and not splenic, immunity correlates with host survival during disseminated candidiasis. Infect Immun 71:5756–5764PubMedCrossRefGoogle Scholar
  106. 106.
    White SJ, Rosenbach A, Lephart P, Nguyen D, Benjamin A, Tzipori S, Whiteway M, Mecsas J, Kumamoto CA (2007) Self-regulation of Candida albicans population size during GI colonization. PLoS Pathog 3(12):e184. doi:10.1371/journal.ppat.0030184 PubMedCrossRefGoogle Scholar
  107. 107.
    Evans ZA, Mardon DN (1977) Organ localization in mice challenged with a typical Candida albicans strain and a pseudohyphal variant. Proc Soc Exp Biol Med 155:234–238PubMedGoogle Scholar
  108. 108.
    MacCallum DM, Odds FC (2005) Temporal events in the intravenous challenge model for experimental Candida albicans infections in female mice. Mycoses 48:151–161PubMedCrossRefGoogle Scholar
  109. 109.
    Rotrosen D, Edwards JE Jr, Gibson TR, Moore JC, Cohen AH, Green I (1985) Adherence of Candida to cultured vascular endothelial cells: mechanisms of attachment and endothelial cell penetration. J Infect Dis 152:1264–1274PubMedCrossRefGoogle Scholar
  110. 110.
    Saisho Y, Morimoto A, Umeda T (1997) Determination of farnesyl pyrophosphate in dog and human plasma by high-performance liquid chromatography with fluorescence detection. Anal Biochem 252:89–95PubMedCrossRefGoogle Scholar
  111. 111.
    Voziyan PA, Haug JS, Melnykovych G (1995) Mechanism of farnesol cytotoxicity: further evidence for the role of PKC-dependent signal transduction in farnesol-induced apoptotic cell death. Biochem Biophys Res Commun 212:479–486PubMedCrossRefGoogle Scholar
  112. 112.
    Skaar EP, Humayun M, Bae T, DeBord KL, Schneewind O (2004) Iron-source preference of Staphylococcus aureus infections. Science 305:1626–1628PubMedCrossRefGoogle Scholar
  113. 113.
    Pfaller MA, Diekema DJ, Rinaldi MG, Barnes R, Hu B, Veselov AV, Tiraboschi N, Nagy E, Gibbs DL; The Global Antifungal Surveillance Group (2005) Results from the ARTEMIS DISK Global Antifungal Surveillance Study: a 6.5-year analysis of susceptibilities of Candida and other yeast species to fluconazole and voriconazole by standardized disk diffusion testing. J Clin Microbiol 43:5848–5859PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • C. S.-Y. Lim
    • 1
  • R. Rosli
    • 2
  • H. F. Seow
    • 3
  • P. P. Chong
    • 1
    • 4
  1. 1.Department of Biomedical Sciences, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  2. 2.Department of Obstetrics and Gynecology, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  3. 3.Department of Pathology, Faculty of Medicine and Health SciencesUniversiti Putra MalaysiaSerdangMalaysia
  4. 4.Institute for BioscienceUniversiti Putra MalaysiaSerdangMalaysia

Personalised recommendations