Species-driven interpretation guidelines in case of a single-sampling strategy for blood culture

  • D. Leyssene
  • S. Gardes
  • P. Vilquin
  • J.-P. Flandrois
  • G. Carret
  • B. Lamy


The purpose of this paper is to define guidelines to interpret positive blood cultures (BCs) to distinguish bloodstream infection (BSI) from contamination in BCs drawn with a single venipuncture. During a 2-year period, each positive BC set (comprising six bottles from a single venipuncture) was prospectively categorised by clinicians, bacteriologists and hospital epidemiologists as BSI or contamination. For each case, the number of positive bottles per set, results from Gram staining and microorganism identification were analysed in order to define interpretation guidelines. We analysed 940 positive BC sets. The BSI rate in monomicrobial BC sets was positively correlated with the number of positive bottles. The positive predictive value was 88% with one and 100% with ≥2 positive bottles for Escherichia coli; 100% for Staphylococcus aureus, Pseudomonas and Candida spp., regardless of the number of positive bottles; 3.5%, 61.1%, 78.9% and 100% for coagulase-negative staphylococci (CoNS) with one, two, three and ≥4 positive bottles, respectively. Using a single-sampling strategy, interpretation guidelines for monomicrobial positive BCs are based on the number of positive bottles per set, results from Gram staining and microorganism identification: ≥4 positive bottles (≥2 with Gram-negative bacilli) always led to a diagnosis of BSI. The CoNS BSI rate positively correlates with the number of positive bottles.


  1. 1.
    Washington JA 2nd (1975) Blood cultures: principles and techniques. Mayo Clin Proc 50(2):91–98, ReviewPubMedGoogle Scholar
  2. 2.
    Weinstein MP (2003) Blood culture contamination: persisting problems and partial progress. J Clin Microbiol 41(6):2275–2278PubMedCrossRefGoogle Scholar
  3. 3.
    Beekmann SE, Diekema DJ, Doern GV (2005) Determining the clinical significance of coagulase-negative staphylococci isolated from blood cultures. Infect Control Hosp Epidemiol 26(6):559–566PubMedCrossRefGoogle Scholar
  4. 4.
    Bekeris LG, Tworek JA, Walsh MK, Valenstein PN (2005) Trends in blood culture contamination: a College of American Pathologists Q-Tracks study of 356 institutions. Arch Pathol Lab Med 129(10):1222–1225PubMedGoogle Scholar
  5. 5.
    Arendrup M, Jensen IP, Justesen T (1996) Diagnosing bacteremia at a Danish hospital using one early large blood volume for culture. Scand J Infect Dis 28(6):609–614PubMedCrossRefGoogle Scholar
  6. 6.
    Lamy B, Roy P, Carret G, Flandrois JP, Delignette-Muller ML (2002) What is the relevance of obtaining multiple blood samples for culture? A comprehensive model to optimize the strategy for diagnosing bacteraemia. Clin Infect Dis 35(7):842–850PubMedCrossRefGoogle Scholar
  7. 7.
    Li J, Plorde JJ, Carlson LG (1994) Effects of volume and periodicity on blood cultures. J Clin Microbiol 32(11):2829–2831PubMedGoogle Scholar
  8. 8.
    Riedel S, Bourbeau P, Swartz B, Brecher S, Carroll KC, Stamper PD, Dunne WM, McCardle T, Walk N, Fiebelkorn K, Sewell D, Richter SS, Beekmann S, Doern GV (2008) Timing of specimen collection for blood cultures from febrile patients with bacteremia. J Clin Microbiol 46(4):1381–1385PubMedCrossRefGoogle Scholar
  9. 9.
    Jonsson B, Nyberg A, Henning C (1993) Theoretical aspects of detection of bacteraemia as a function of the volume of blood cultured. APMIS 101(8):595–601PubMedCrossRefGoogle Scholar
  10. 10.
    Wain J, Diep TS, Ho VA, Walsh AM, Nguyen TT, Parry CM, White NJ (1998) Quantitation of bacteria in blood of typhoid fever patients and relationship between counts and clinical features, transmissibility, and antibiotic resistance. J Clin Microbiol 36(6):1683–1687PubMedGoogle Scholar
  11. 11.
    Riedel S, Carroll KC (2010) Blood cultures: key elements for best practices and future directions. J Infect Chemother 16(5):301–316, Epub 2010 May 21PubMedCrossRefGoogle Scholar
  12. 12.
    Groupe Rémic de la Société Française de Microbiologie (2007) Référentiel en microbiologie médicale (bactériologie et mycologie). Vivactis Plus, ParisGoogle Scholar
  13. 13.
    Groupe Rémic de la Société Française de Microbiologie (2010) Référentiel en microbiologie médicale. Société Française de Microbiologie, ParisGoogle Scholar
  14. 14.
    MacGregor RR, Beaty HN (1972) Evaluation of positive blood cultures. Guidelines for early differentiation of contaminated from valid positive cultures. Arch Intern Med 130(1):84–87PubMedCrossRefGoogle Scholar
  15. 15.
    Calfee DP, Farr BM (2002) Comparison of four antiseptic preparations for skin in the prevention of contamination of percutaneously drawn blood cultures: a randomized trial. J Clin Microbiol 40(5):1660–1665PubMedCrossRefGoogle Scholar
  16. 16.
    Everts RJ, Vinson EN, Adholla PO, Reller LB (2001) Contamination of catheter-drawn blood cultures. J Clin Microbiol 39(9):3393–3394PubMedCrossRefGoogle Scholar
  17. 17.
    Beutz M, Sherman G, Mayfield J, Fraser VJ, Kollef MH (2003) Clinical utility of blood cultures drawn from central vein catheters and peripheral venipuncture in critically ill medical patients. Chest 123(3):854–861PubMedCrossRefGoogle Scholar
  18. 18.
    Cockerill FR 3rd, Wilson JW, Vetter EA, Goodman KM, Torgerson CA, Harmsen WS, Schleck CD, Ilstrup DM, Washington JA 2nd, Wilson WR (2004) Optimal testing parameters for blood cultures. Clin Infect Dis 38(12):1724–1730, Epub 2004 May 25PubMedCrossRefGoogle Scholar
  19. 19.
    Schifman RB, Strand CL, Braun E, Louis-Charles A, Spark RP, Fried ML (1991) Solitary blood cultures as a quality assurance indicator. Qual Assur Util Rev 6(4):132–137PubMedGoogle Scholar
  20. 20.
    Weinstein MP, Towns ML, Quartey SM, Mirrett S, Reimer LG, Parmigiani G, Reller LB (1997) The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin Infect Dis 24(4):584–602PubMedGoogle Scholar
  21. 21.
    Garrouste-Orgeas M, Chevret S, Mainardi JL, Timsit JF, Misset B, Carlet J (2000) A one-year prospective study of nosocomial bacteraemia in ICU and non-ICU patients and its impact on patient outcome. J Hosp Infect 44(3):206–213PubMedCrossRefGoogle Scholar
  22. 22.
    Diekema DJ, Beekmann SE, Chapin KC, Morel KA, Munson E, Doern GV (2003) Epidemiology and outcome of nosocomial and community-onset bloodstream infection. J Clin Microbiol 41(8):3655–3660PubMedCrossRefGoogle Scholar
  23. 23.
    Scheckler WE, Bobula JA, Beamsley MB, Hadden ST (2003) Bloodstream infections in a community hospital: a 25-year follow-up. Infect Control Hosp Epidemiol 24(12):936–941PubMedCrossRefGoogle Scholar
  24. 24.
    Fenner L, Widmer AF, Straub C, Frei R (2008) Is the incidence of anaerobic bacteremia decreasing? Analysis of 114,000 blood cultures over a ten-year period. J Clin Microbiol 46(7):2432–2434, Epub 2008 May 7PubMedCrossRefGoogle Scholar
  25. 25.
    Lazarovitch T, Freimann S, Shapira G, Blank H (2010) Decrease in anaerobe-related bacteraemias and increase in Bacteroides species isolation rate from 1998 to 2007: a retrospective study. Anaerobe 16(3):201–205, Epub 2009 Sep 23PubMedCrossRefGoogle Scholar
  26. 26.
    Tsalik EL, Jones D, Nicholson B, Waring L, Liesenfeld O, Park LP, Glickman SW, Caram LB, Langley RJ, van Velkinburgh JC, Cairns CB, Rivers EP, Otero RM, Kingsmore SF, Lalani T, Fowler VG, Woods CW (2010) Multiplex PCR to diagnose bloodstream infections in patients admitted from the emergency department with sepsis. J Clin Microbiol 48(1):26–33, Epub 2009 Oct 21PubMedCrossRefGoogle Scholar
  27. 27.
    Bates DW, Goldman L, Lee TH (1991) Contaminant blood cultures and resource utilization. The true consequences of false-positive results. JAMA 265(3):365–369PubMedCrossRefGoogle Scholar
  28. 28.
    Little JR, Trovillion E, Fraser V (1997) High frequency of pseudobacteremia at a university hospital. Infect Control Hosp Epidemiol 18(3):200–202PubMedCrossRefGoogle Scholar
  29. 29.
    Archibald LK, Pallangyo K, Kazembe P, Reller LB (2006) Blood culture contamination in Tanzania, Malawi, and the United States: a microbiological tale of three cities. J Clin Microbiol 44(12):4425–4429, Epub 2006 Oct 4PubMedCrossRefGoogle Scholar
  30. 30.
    Kallel H, Dammak H, Mahjoubi F, Bahloul M, Turki E, Chelly H, Rekik N, Hammami A, Bouaziz M (2006) Contamination of blood cultures drawn from central vein catheter and peripheral venipuncture. Prospective study of 75 pairs. Pathol Biol 54(1):44–48PubMedCrossRefGoogle Scholar
  31. 31.
    Hall KK, Lyman JA (2006) Updated review of blood culture contamination. Clin Microbiol Rev 19(4):788–802PubMedCrossRefGoogle Scholar
  32. 32.
    Peacock SJ, Bowler IC, Crook DW (1995) Positive predictive value of blood cultures growing coagulase-negative staphylococci. Lancet 346(8968):191–192PubMedCrossRefGoogle Scholar
  33. 33.
    Mirrett S, Weinstein MP, Reimer LG, Wilson ML, Reller LB (2001) Relevance of the number of positive bottles in determining clinical significance of coagulase-negative staphylococci in blood cultures. J Clin Microbiol 39(9):3279–3281PubMedCrossRefGoogle Scholar
  34. 34.
    Gupta P, Kumhar GD, Kaur G, Ramachandran VG (2005) Clinical significance of polymicrobial bacteremia in newborns. J Paediatr Child Health 41(7):365–368PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • D. Leyssene
    • 1
    • 2
    • 5
  • S. Gardes
    • 3
  • P. Vilquin
    • 3
  • J.-P. Flandrois
    • 1
    • 2
    • 5
  • G. Carret
    • 1
    • 2
    • 5
  • B. Lamy
    • 4
  1. 1.Université de LyonLyonFrance
  2. 2.CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Faculté de Médecine Lyon Sud Charles MérieuxUniversité Lyon 1Oullins CedexFrance
  3. 3.Unité d’Hygiène et d’EpidémiologieCentre Hospitalier Lyon SudPierre-BéniteFrance
  4. 4.Laboratoire de BactériologieCentre Hospitalier Régional UniversitaireMontpellierFrance
  5. 5.Laboratoire de BactériologieCentre Hospitalier Lyon SudPierre-BéniteFrance

Personalised recommendations