Resistance trends and in vitro activity of tigecycline and 17 other antimicrobial agents against Gram-positive and Gram-negative organisms, including multidrug-resistant pathogens, in Germany

  • M. Kresken
  • K. Becker
  • H. Seifert
  • E. Leitner
  • B. Körber-Irrgang
  • C. von Eiff
  • P.-A. Löschmann
  • Study Group
Article

Abstract

To document the development of resistance to tigecycline in comparison with 17 other antimicrobials, the susceptibilities of 2,741 isolates comprising 16 bacterial species recovered from hospitalised patients in 15 German centres in 2009 were assessed. The results were compared with those of previous trials (German Tigecycline Evaluation Surveillance Trial, G-TEST I and II, performed in 2005 and 2007, respectively) conducted prior to and shortly after the introduction of tigecycline in Germany. Moreover, the in vitro activities of tigecycline against the subset of multidrug-resistant (MDR) pathogens recovered within all three sampling periods (n = 4,988) were evaluated in comparison to the corresponding non-MDR isolates. All susceptibility tests were performed by broth microdilution. Between 2005 and 2009, tigecycline retained its high activity against Gram-positive and Gram-negative organisms, including MDR pathogens. By contrast, an in part marked increase in resistance to broad-spectrum beta-lactams and fluoroquinolones was observed for many Enterobacteriaceae and for non-fermenting Gram-negative bacteria. Against a background of a steadily increasing number of multiresistant pathogens, the activity of tigecycline remained unaltered. With the exception of Acinetobacter isolates with decreased susceptibility to carbapenems, tigecycline’s activity profile was not notably affected by organisms resistant to other drug classes and, thus, holds promise as an important therapeutic agent, particularly for situations in which MDR organisms are suspected.

Notes

Acknowledgements

The study was supported by Pfizer Pharma GmbH, Berlin.

Conflict of interest

MK, KB and HS have received travel, research grant support and/or lecture fees from Pfizer. EL, CvE and P-AL are employees of Pfizer Pharma GmbH.

Supplementary material

10096_2011_1197_MOESM1_ESM.pdf (56 kb)
Online Resource 1In vitro activity of tigecycline and comparative agents against aerobic Gram-negative bacteria: results of G-TEST 1 (G1), G-TEST 2 (G2) and G-TEST 3 (G3) (PDF 55 kb)
10096_2011_1197_MOESM2_ESM.pdf (30 kb)
Online Resource 2In vitro activity of tigecycline and comparative agents against aerobic Gram-positive bacteria: results of G-TEST 1 (G1), G-TEST 2 (G2) and G-TEST 3 (G3) (PDF 29 kb)
10096_2011_1197_MOESM3_ESM.pdf (55 kb)
Online Resource 3In vitro activities of tigecycline and comparators against Gram-negative non-MDR and MDR strains (PDF 55 kb)
10096_2011_1197_MOESM4_ESM.pdf (49 kb)
Online Resource 4In vitro activities of tigecycline and comparators against Gram-positive non-MDR and MDR strains (PDF 48 kb)

References

  1. 1.
    Fauci AS (2001) Infectious diseases: considerations for the 21st century. Clin Infect Dis 32:675–685PubMedCrossRefGoogle Scholar
  2. 2.
    Armstrong GL, Conn LA, Pinner RW (1999) Trends in infectious disease mortality in the United States during the 20th century. JAMA 281:61–66PubMedCrossRefGoogle Scholar
  3. 3.
    Cohen ML (2000) Changing patterns of infectious disease. Nature 406:762–767PubMedCrossRefGoogle Scholar
  4. 4.
    Bundesministerium für Gesundheit, Bundesministerium für Ernährung, Landwirtschaft und Verbraucherschutz, und Bundesministerium für Bildung und Forschung (2008) DART—Deutsche Antibiotika-ResistenzstrategieGoogle Scholar
  5. 5.
    Rice LB (2007) Emerging issues in the management of infections caused by multidrug-resistant gram-negative bacteria. Cleve Clin J Med 74(Suppl 4):S12–S20PubMedCrossRefGoogle Scholar
  6. 6.
    Gootz TD (2010) The global problem of antibiotic resistance. Crit Rev Immunol 30:79–93PubMedGoogle Scholar
  7. 7.
    Fraise AP (2006) Tigecycline: the answer to beta-lactam and fluoroquinolone resistance? J Infect 53:293–300PubMedCrossRefGoogle Scholar
  8. 8.
    Rodríguez de Castro F, Naranjo OR, Marco JA, Violán JS (2009) New antimicrobial molecules and new antibiotic strategies. Semin Respir Crit Care Med 30:161–171PubMedCrossRefGoogle Scholar
  9. 9.
    Peterson LR (2008) Currently available antimicrobial agents and their potential for use as monotherapy. Clin Microbiol Infect 14(Suppl 6):30–45PubMedCrossRefGoogle Scholar
  10. 10.
    Kelesidis T, Karageorgopoulos DE, Kelesidis I, Falagas ME (2008) Tigecycline for the treatment of multidrug-resistant Enterobacteriaceae: a systematic review of the evidence from microbiological and clinical studies. J Antimicrob Chemother 62:895–904PubMedCrossRefGoogle Scholar
  11. 11.
    European Antimicrobial Resistance Surveillance System (EARSS) (2009) EARSS Annual Report 2008Google Scholar
  12. 12.
    Fritsche TR, Kirby JT, Jones RN (2004) In vitro activity of tigecycline (GAR-936) tested against 11,859 recent clinical isolates associated with community-acquired respiratory tract and gram-positive cutaneous infections. Diagn Microbiol Infect Dis 49:201–209PubMedCrossRefGoogle Scholar
  13. 13.
    Fluit AC, Florijn A, Verhoef J, Milatovic D (2005) Presence of tetracycline resistance determinants and susceptibility to tigecycline and minocycline. Antimicrob Agents Chemother 49:1636–1638PubMedCrossRefGoogle Scholar
  14. 14.
    Dean CR, Visalli MA, Projan SJ, Sum PE, Bradford PA (2003) Efflux-mediated resistance to tigecycline (GAR-936) in Pseudomonas aeruginosa PAO1. Antimicrob Agents Chemother 47:972–978PubMedCrossRefGoogle Scholar
  15. 15.
    Visalli MA, Murphy E, Projan SJ, Bradford PA (2003) AcrAB multidrug efflux pump is associated with reduced levels of susceptibility to tigecycline (GAR-936) in Proteus mirabilis. Antimicrob Agents Chemother 47:665–669PubMedCrossRefGoogle Scholar
  16. 16.
    Keeney D, Ruzin A, McAleese F, Murphy E, Bradford PA (2008) MarA-mediated overexpression of the AcrAB efflux pump results in decreased susceptibility to tigecycline in Escherichia coli. J Antimicrob Chemother 61:46–53PubMedCrossRefGoogle Scholar
  17. 17.
    McAleese F, Petersen P, Ruzin A, Dunman PM, Murphy E, Projan SJ, Bradford PA (2005) A novel MATE family efflux pump contributes to the reduced susceptibility of laboratory-derived Staphylococcus aureus mutants to tigecycline. Antimicrob Agents Chemother 49:1865–1871PubMedCrossRefGoogle Scholar
  18. 18.
    Ruzin A, Visalli MA, Keeney D, Bradford PA (2005) Influence of transcriptional activator RamA on expression of multidrug efflux pump AcrAB and tigecycline susceptibility in Klebsiella pneumoniae. Antimicrob Agents Chemother 49:1017–1022PubMedCrossRefGoogle Scholar
  19. 19.
    Kresken M, Leitner E, Brauers J, Geiss HK, Halle E, von Eiff C, Peters G, Seifert H (2009) Susceptibility of common aerobic pathogens to tigecycline: results of a surveillance study in Germany. Eur J Clin Microbiol Infect Dis 28:83–90PubMedCrossRefGoogle Scholar
  20. 20.
    Kresken M, Leitner E, Seifert H, Peters G, von Eiff C (2009) Susceptibility of clinical isolates of frequently encountered bacterial species to tigecycline one year after the introduction of this new class of antibiotics: results of the second multicentre surveillance trial in Germany (G-TEST II, 2007). Eur J Clin Microbiol Infect Dis 28:1007–1011PubMedCrossRefGoogle Scholar
  21. 21.
    Deutsches Institut für Normung (DIN) (2006) Labormedizinische Untersuchungen und In-vitro-Diagnostika-Systeme—Empfindlichkeitsprüfung von Infektionserregern und Evaluation von Geräten zur antimikrobiellen Empfindlichkeitsprüfung, Teil 1: Referenzmethode zur Testung der In-vitro-Aktivität von antimikrobiellen Substanzen gegen schnell wachsende aerobe Bakterien, die Infektionskrankheiten verursachen (ISO 20776–1:2006). Beuth-Verlag, BerlinGoogle Scholar
  22. 22.
    European Committee on Antimicrobial Susceptibility Testing (EUCAST) (2010) Breakpoint tables for interpretation of MICs and zone diameters. Version 1.1 April 2010Google Scholar
  23. 23.
    Clinical and Laboratory Standards Institute (CLSI) (2009) Performance Standards for Antimicrobial Susceptibility Testing; Nineteenth Informational Supplement. CLSI document M100-S19. CLSI, Wayne, PAGoogle Scholar
  24. 24.
    Clinical and Laboratory Standards Institute (CLSI) (2008) Performance Standards for Antimicrobial Susceptibility Testing; Eighteenth Informational Supplement (M100-S18). CLSI, Wayne, PAGoogle Scholar
  25. 25.
    Papaparaskevas J, Tzouvelekis LS, Tsakris A, Pittaras TE, Legakis NJ (2010) In vitro activity of tigecycline against 2423 clinical isolates and comparison of the available interpretation breakpoints. Diagn Microbiol Infect Dis 66:187–194PubMedCrossRefGoogle Scholar
  26. 26.
    Bantar C, Curcio D, Fernandez Canigia L, García P, Guzmán Blanco M, Leal AL (2009) Comparative in vitro activity of tigecycline against bacteria recovered from clinical specimens in Latin America. J Chemother 21:144–152PubMedGoogle Scholar
  27. 27.
    Wang YF, Dowzicky MJ (2010) In vitro activity of tigecycline and comparators on Acinetobacter spp. isolates collected from patients with bacteremia and MIC change during the Tigecycline Evaluation and Surveillance Trial, 2004 to 2008. Diagn Microbiol Infect Dis 68:73–79PubMedCrossRefGoogle Scholar
  28. 28.
    Jones RN, Fritsche TR, Sader HS, Ross JE (2007) LEADER surveillance program results for 2006: an activity and spectrum analysis of linezolid using clinical isolates from the United States (50 medical centers). Diagn Microbiol Infect Dis 59:309–317PubMedCrossRefGoogle Scholar
  29. 29.
    Long KS, Poehlsgaard J, Kehrenberg C, Schwarz S, Vester B (2006) The Cfr rRNA methyltransferase confers resistance to phenicols, lincosamides, oxazolidinones, pleuromutilins, and streptogramin A antibiotics. Antimicrob Agents Chemother 50:2500–2505PubMedCrossRefGoogle Scholar
  30. 30.
    Morales G, Picazo JJ, Baos E, Candel FJ, Arribi A, Peláez B, Andrade R, de la Torre MA, Fereres J, Sánchez-García M (2010) Resistance to linezolid is mediated by the cfr gene in the first report of an outbreak of linezolid-resistant Staphylococcus aureus. Clin Infect Dis 50:821–825PubMedCrossRefGoogle Scholar
  31. 31.
    Bonilla H, Huband MD, Seidel J, Schmidt H, Lescoe M, McCurdy SP, Lemmon MM, Brennan LA, Tait-Kamradt A, Puzniak L, Quinn JP (2010) Multicity outbreak of linezolid-resistant Staphylococcus epidermidis associated with clonal spread of a cfr-containing strain. Clin Infect Dis 51:796–800PubMedCrossRefGoogle Scholar
  32. 32.
    Lautenbach E, Fishman NO, Metlay JP, Mao X, Bilker WB, Tolomeo P, Nachamkin I (2006) Phenotypic and genotypic characterization of fecal Escherichia coli isolates with decreased susceptibility to fluoroquinolones: results from a large hospital-based surveillance initiative. J Infect Dis 194:79–85PubMedCrossRefGoogle Scholar
  33. 33.
    Zervos MJ, Hershberger E, Nicolau DP, Ritchie DJ, Blackner LK, Coyle EA, Donnelly AJ, Eckel SF, Eng RH, Hiltz A, Kuyumjian AG, Krebs W, McDaniel A, Hogan P, Lubowski TJ (2003) Relationship between fluoroquinolone use and changes in susceptibility to fluoroquinolones of selected pathogens in 10 United States teaching hospitals, 1991–2000. Clin Infect Dis 37:1643–1648PubMedCrossRefGoogle Scholar
  34. 34.
    Boyd LB, Atmar RL, Randall GL, Hamill RJ, Steffen D, Zechiedrich L (2008) Increased fluoroquinolone resistance with time in Escherichia coli from >17,000 patients at a large county hospital as a function of culture site, age, sex, and location. BMC Infect Dis 8:4PubMedCrossRefGoogle Scholar
  35. 35.
    Protonotariou E, Dimitroulia E, Pournaras S, Pitiriga V, Sofianou D, Tsakris A (2010) Trends in antimicrobial resistance of clinical isolates of Enterococcus faecalis and Enterococcus faecium in Greece between 2002 and 2007. J Hosp Infect 75:225–227PubMedCrossRefGoogle Scholar
  36. 36.
    Claesson C, Hällgren A, Nilsson M, Svensson E, Hanberger H, Nilsson LE (2007) Susceptibility of staphylococci and enterococci to antimicrobial agents at different ward levels in four north European countries. Scand J Infect Dis 39:1002–1012PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Kresken
    • 1
  • K. Becker
    • 2
  • H. Seifert
    • 3
  • E. Leitner
    • 4
  • B. Körber-Irrgang
    • 1
  • C. von Eiff
    • 2
    • 4
  • P.-A. Löschmann
    • 4
  • Study Group
  1. 1.Antiinfectives Intelligence GmbH, Campus Hochschule Bonn-Rhein-SiegRheinbachGermany
  2. 2.Institute of Medical MicrobiologyUniversity Hospital MünsterMünsterGermany
  3. 3.Institute for Medical Microbiology, Immunology and HygieneUniversity Hospital of CologneCologneGermany
  4. 4.Pfizer Pharma GmbHBerlinGermany

Personalised recommendations