Human antimicrobial proteins in ear wax

  • M. Schwaab
  • A. Gurr
  • A. Neumann
  • S. Dazert
  • A. Minovi


The external auditory canal is vulnerable to bacterial infections, but little is known about thechemical compositions of ear wax regarding antimicrobial peptides. We, therefore, studied the proteinconcentrations of ten well-known human antimicrobial peptides from ear wax.Twenty ear wax samples from healthy individuals were analysed using enzyme-linked immunosorbent assay (ELISA) to determine theprotein concentrations of the antimicrobial peptides hBD1-3, lactoferrin, LL-37, BPI, hSLPI and HNP1-3. All ten antimicrobial peptides are present in ear wax. Some of these proteins seem to be merelycell-bound in ear wax. Antimicrobial peptides in ear wax prevent bacteria and fungi from causing infections inthe external auditory canal. The role and importance of these proteins for the blind-ending ear externalcanal is discussed. If this local defence system fails, infections of the external auditory canal may result.The knowledge about the presence of antimicrobial peptides in cerumen may lead to new concepts ofthe local treatment of external auditory canal diseases in the future.


Antimicrobial Peptide External Auditory Canal Otitis Externa Human Lactoferrin Antimicrobial Potency 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Part of the data was reported at the annual meeting of the Association of Ear, Nose, and Throat Physicians of West Germany in Bochum, Germany, March 2010.

We thank Dr. med. M. D. Pearson for proofreading this manuscript and making corrections in his native language.

Conflict of interest

The authors have declared that no conflict of interest exists. There was no sponsorship or funding arrangements relating to the research.


  1. 1.
    Cole AM, Dewan P, Ganz T (1999) Innate antimicrobial activity of nasal secretions. Infect Immun 67:3267–3275PubMedGoogle Scholar
  2. 2.
    Hiemstra PS (2007) The role of epithelial beta-defensins and cathelicidins in host defense of the lung. Exp Lung Res 33(10):537–542PubMedCrossRefGoogle Scholar
  3. 3.
    Beisswenger C, Bals R (2005) Antimicrobial peptides in lung inflammation. Chem Immunol Allerg 86:55–71CrossRefGoogle Scholar
  4. 4.
    Shai Y, Makovitzky A, Avrahami D (2006) Host defense peptides and lipopeptides: modes of action and potential candidates for the treatment of bacterial and fungal infections. Curr Protein Pept Sci 7(6):479–486PubMedCrossRefGoogle Scholar
  5. 5.
    Koczulla AR, Bals R (2003) Antimicrobial peptides: current status and therapeutic potential. Drugs 63:389–406PubMedCrossRefGoogle Scholar
  6. 6.
    Yang D, Biragyn A, Hoover DM, Lubkowski J, Oppenheim JJ (2004) Multiple roles of antimicrobial defensins, cathelicidins, and eosinophil-derived neurotoxin in host defense. Annu Rev Immunol 22:181–215PubMedCrossRefGoogle Scholar
  7. 7.
    Yang D, Biragyn A, Kwak LW, Oppenheim JJ (2002) Mammalian defensins in immunity: more than just microbicidal. Trends Immunol 23:291–296PubMedCrossRefGoogle Scholar
  8. 8.
    Bensch KW, Raida M, Mägert HJ, Schulz-Knappe P, Forssmann WG (1995) hBD-1: a novel beta-defensin from human plasma. FEBS Lett 368:331–335PubMedCrossRefGoogle Scholar
  9. 9.
    Sørensen OE, Cowland JB, Theilgaard-Mönch K, Liu L, Ganz T, Borregaard N (2003) Wound healing and expression of antimicrobial peptides/polypeptides in human keratinocytes, a consequence of common growth factors. J Immunol 170:5583–5589PubMedGoogle Scholar
  10. 10.
    Goldman MJ, Anderson GM, Stolzenberg ED, Kari UP, Zasloff M, Wilson JM (1997) Human beta-defensin-1 is a salt-sensitive antibiotic in lung that is inactivated in cystic fibrosis. Cell 88:553–560PubMedCrossRefGoogle Scholar
  11. 11.
    Krisanaprakornkit S, Weinberg A, Perez CN, Dale BA (1998) Expression of the peptide antibiotic human beta-defensin 1 in cultured gingival epithelial cells and gingival tissue. Infect Immun 66(9):4222–4228PubMedGoogle Scholar
  12. 12.
    Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC (2005) Human defensins. J Mol Med 83(8):587–595, Epub 2005 Apr 9PubMedCrossRefGoogle Scholar
  13. 13.
    Schröder JM, Harder J (1999) Human beta-defensin-2. Int J Biochem Cell Biol 31(6):645–651PubMedCrossRefGoogle Scholar
  14. 14.
    Sørensen OE, Thapa DR, Rosenthal A, Liu L, Roberts AA, Ganz T (2005) Differential regulation of beta-defensin expression in human skin by microbial stimuli. J Immunol 174:4870–4879PubMedGoogle Scholar
  15. 15.
    Uehara N, Yagihashi A, Kondoh K, Tsuji N, Fujita T, Hamada H, Watanabe N (2003) Human beta-defensin-2 induction in Helicobacter pylori-infected gastric mucosal tissues: antimicrobial effect of overexpression. J Med Microbiol 52:41–45PubMedCrossRefGoogle Scholar
  16. 16.
    Harder J, Bartels J, Christophers E, Schröder JM (2001) Isolation and characterization of human beta-defensin-3, a novel human inducible peptide antibiotic. J Biol Chem 276(8):5707–5713PubMedCrossRefGoogle Scholar
  17. 17.
    Hiratsuka T, Mukae H, Iiboshi H, Ashitani J, Nabeshima K, Minematsu T, Chino N, Ihi T, Kohno S, Nakazato M (2003) Increased concentrations of human beta-defensins in plasma and bronchoalveolar lavage fluid of patients with diffuse panbronchiolitis. Thorax 58:425–430PubMedCrossRefGoogle Scholar
  18. 18.
    Bals R, Wang X, Zasloff M, Wilson JM (1998) The peptide antibiotic LL-37/hCAP-18 is expressed in epithelia of the human lung where it has broad antimicrobial activity at the airway surface. Proc Natl Acad Sci USA 95:9541–9546PubMedCrossRefGoogle Scholar
  19. 19.
    Agerberth B, Charo J, Werr J, Olsson B, Idali F, Lindbom L, Kiessling R, Jörnvall H, Wigzell H, Gudmundsson GH (2000) The human antimicrobial and chemotactic peptides LL-37 and alpha-defensins are expressed by specific lymphocyte and monocyte populations. Blood 96(9):3086–3093, Nov 1PubMedGoogle Scholar
  20. 20.
    Wang Y, Walter G, Herting E, Agerberth B, Johansson J (2004) Antibacterial activities of the cathelicidins prophenin (residues 62 to 79) and LL-37 in the presence of a lung surfactant preparation. Antimicrob Agents Chemother 48(6):2097–2100, JunPubMedCrossRefGoogle Scholar
  21. 21.
    Frohm Nilsson M, Sandstedt B, Sørensen O, Weber G, Borregaard N, Ståhle-Bäckdahl M (1999) The human cationic antimicrobial protein (hCAP18), a peptide antibiotic, is widely expressed in human squamous epithelia and colocalizes with interleukin-6. Infect Immun 67(5):2561–2566PubMedGoogle Scholar
  22. 22.
    Agerberth B, Gunne H, Odeberg J, Kogner P, Boman HG, Gudmundsson GH (1995) FALL-39, a putative human peptide antibiotic, is cysteine-free and expressed in bone marrow and testis. Proc Natl Acad Sci USA 92:195–199PubMedCrossRefGoogle Scholar
  23. 23.
    Travis SM, Anderson NN, Forsyth WR, Espiritu C, Conway BD, Greenberg EP, McCray PB Jr, Lehrer RI, Welsh MJ, Tack BF (2000) Bactericidal activity of mammalian cathelicidin-derived peptides. Infect Immun 68:2748–2755PubMedCrossRefGoogle Scholar
  24. 24.
    Koczulla R, von Degenfeld G, Kupatt C, Krötz F, Zahler S, Gloe T, Issbrücker K, Unterberger P, Zaiou M, Lebherz C, Karl A, Raake P, Pfosser A, Boekstegers P, Welsch U, Hiemstra PS, Vogelmeier C, Gallo RL, Clauss M, Bals R (2003) An angiogenic role for the human peptide antibiotic LL-37/hCAP-18. J Clin Invest 111(11):1665–1672PubMedCrossRefGoogle Scholar
  25. 25.
    von Haussen J, Koczulla R, Shaykhiev R, Herr C, Pinkenburg O, Reimer D, Wiewrodt R, Biesterfeld S, Aigner A, Czubayko F, Bals R (2008) The host defence peptide LL-37/hCAP-18 is a growth factor for lung cancer cells. Lung Cancer 59(1):12–23, Epub 2007 Aug 31CrossRefGoogle Scholar
  26. 26.
    Larrick JW, Hirata M, Balint RF, Lee J, Zhong J, Wright SC (1995) Human CAP18: a novel antimicrobial lipopolysaccharide-binding protein. Infect Immun 63:1291–1297PubMedGoogle Scholar
  27. 27.
    Abe T, Kobayashi N, Yoshimura K, Trapnell BC, Kim H, Hubbard RC, Brewer MT, Thompson RC, Crystal RG (1991) Expression of the secretory leukoprotease inhibitor gene in epithelial cells. J Clin Invest 87(6):2207–2215PubMedCrossRefGoogle Scholar
  28. 28.
    Brown A, Farmer K, MacDonald L, Kalsheker N, Pritchard D, Haslett C, Lamb J, Sallenave JM (2003) House dust mite Der p 1 downregulates defenses of the lung by inactivating elastase inhibitors. Am J Respir Cell Mol Biol 29(3 Pt 1):381–389PubMedCrossRefGoogle Scholar
  29. 29.
    Hiemstra PS, Maassen RJ, Stolk J, Heinzel-Wieland R, Steffens GJ, Dijkman JH (1996) Antibacterial activity of antileukoprotease. Infect Immun 64(11):4520–4524PubMedGoogle Scholar
  30. 30.
    Wahl SM, McNeely TB, Janoff EN, Shugars D, Worley P, Tucker C, Orenstein JM (1997) Secretory leukocyte protease inhibitor (SLPI) in mucosal fluids inhibits HIV-I. Oral Dis 3(Suppl 1):S64–S69PubMedGoogle Scholar
  31. 31.
    Weiss J, Elsbach P, Olsson I, Odeberg H (1978) Purification and characterization of a potent bactericidal and membrane active protein from the granules of human polymorphonuclear leukocytes. J Biol Chem 253:2664–2672PubMedGoogle Scholar
  32. 32.
    Ooi CE, Weiss J, Elsbach P, Frangione B, Mannion B (1987) A 25-kDa NH2-terminal fragment carries all the antibacterial activities of the human neutrophil 60-kDa bactericidal/permeability-increasing protein. J Biol Chem 262:14891–14894PubMedGoogle Scholar
  33. 33.
    Reichel PH, Seemann C, Csernok E, Schröder JM, Müller A, Gross WL, Schultz H (2003) Bactericidal/permeability-increasing protein is expressed by human dermal fibroblasts and upregulated by interleukin 4. Clin Diagn Lab Immunol 10:473–475PubMedGoogle Scholar
  34. 34.
    Peuravuori H, Aho VV, Aho HJ, Collan Y, Saari KM (2006) Bactericidal/permeability-increasing protein in lacrimal gland and in tears of healthy subjects. Graefes Arch Clin Exp Ophthalmol 244:143–148PubMedCrossRefGoogle Scholar
  35. 35.
    von der Möhlen MA, Kimmings AN, Wedel NI, Mevissen ML, Jansen J, Friedmann N, Lorenz TJ, Nelson BJ, White ML, Bauer R, Hack CE, Eerenberg AJM, van Deventer SJH (1995) Inhibition of endotoxin-induced cytokine release and neutrophil activation in humans by use of recombinant bactericidal/permeability-increasing protein. J Infect Dis 172:144–151PubMedCrossRefGoogle Scholar
  36. 36.
    Demetriades D, Smith JS, Jacobson LE, Moncure M, Minei J, Nelson BJ, Scannon PJ (1999) Bactericidal/permeability-increasing protein (rBPI21) in patients with hemorrhage due to trauma: results of a multicenter phase II clinical trial. rBPI21 Acute Hemorrhagic Trauma Study Group. J Trauma 46:667–676PubMedCrossRefGoogle Scholar
  37. 37.
    Levin M, Quint PA, Goldstein B, Barton P, Bradley JS, Shemie SD, Yeh T, Kim SS, Cafaro DP, Scannon PJ, Giroir BP (2000) Recombinant bactericidal/permeability-increasing protein (rBPI21) as adjunctive treatment for children with severe meningococcal sepsis: a randomised trial. rBPI21 Meningococcal Sepsis Study Group. Lancet 356:961–7PubMedCrossRefGoogle Scholar
  38. 38.
    Giroir BP, Quint PA, Barton P, Kirsch EA, Kitchen L, Goldstein B, Nelson BJ, Wedel NJ, Carroll SF, Scannon PJ (1997) Preliminary evaluation of recombinant amino-terminal fragment of human bactericidal/permeability-increasing protein in children with severe meningococcal sepsis. Lancet 350:1439–1443PubMedCrossRefGoogle Scholar
  39. 39.
    Stenfors LE, Bye HM, Räisänen S (2002) Immunocytochemical localization of lysozyme and lactoferrin attached to surface bacteria of the palatine tonsils during infectious mononucleosis. J Laryngol Otol 116(4):264–268PubMedCrossRefGoogle Scholar
  40. 40.
    Yamauchi K, Tomita M, Giehl TJ, Ellison RT 3rd (1993) Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun 61(2):719–728PubMedGoogle Scholar
  41. 41.
    Otto BR, Verweij-van Vught AM, MacLaren DM (1992) Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit Rev Microbiol 18(3):217–233PubMedCrossRefGoogle Scholar
  42. 42.
    Ganz T, Selsted ME, Szklarek D, Harwig SS, Daher K, Bainton DF, Lehrer RI (1985) Defensins. Natural peptide antibiotics of human neutrophils. J Clin Invest 76:1427–1435PubMedCrossRefGoogle Scholar
  43. 43.
    Soehnlein O, Kai-Larsen Y, Frithiof R, Sorensen OE, Kenne E, Scharffetter-Kochanek K, Eriksson EE, Herwald H, Agerberth B, Lindbom L (2008) Neutrophil primary granule proteins HBP and HNP1–3 boost bacterial phagocytosis by human and murine macrophages. J Clin Invest 118:3491–3502PubMedCrossRefGoogle Scholar
  44. 44.
    Aarbiou J, Ertmann M, van Wetering S, van Noort P, Rook D, Rabe KF, Litvinov SV, van Krieken JH, de Boer WI, Hiemstra PS (2002) Human neutrophil defensins induce lung epithelial cell proliferation in vitro. J Leukoc Biol 72:167–174PubMedGoogle Scholar
  45. 45.
    Murphy CJ, Foster BA, Mannis MJ, Selsted ME, Reid TW (1993) Defensins are mitogenic for epithelial cells and fibroblasts. J Cell Physiol 155:408–413PubMedCrossRefGoogle Scholar
  46. 46.
    Alvord LS, Farmer BL (1997) Anatomy and orientation of the human external ear. J Am Acad Audiol 8(6):383–390PubMedGoogle Scholar
  47. 47.
    Overfield T (1985) Biologic variation in health and illness: race, age, and sex differences. Addison-Wesley Publishing, Menlo Park, CAGoogle Scholar
  48. 48.
    Yoshiura K, Kinoshita A, Ishida T, Ninokata A, Ishikawa T, Kaname T, Bannai M, Tokunaga K, Sonoda S, Komaki R, Ihara M, Saenko VA, Alipov GK, Sekine I, Komatsu K, Takahashi H, Nakashima M, Sosonkina N, Mapendano CK, Ghadami M, Nomura M, Liang DS, Miwa N, Kim DK, Garidkhuu A, Natsume N, Ohta T, Tomita H, Kaneko A, Kikuchi M, Russomando G, Hirayama K, Ishibashi M, Takahashi A, Saitou N, Murray JC, Saito S, Nakamura Y, Niikawa N (2006) A SNP in the ABCC11 gene is the determinant of human earwax type. Nat Genet 38(3):324–330, Epub 2006 Jan 29PubMedCrossRefGoogle Scholar
  49. 49.
    Bass EJ, Jackson JF (1977) Cerumen types in Eskimos. Am J Phys Anthropol 47(2):209–210PubMedCrossRefGoogle Scholar
  50. 50.
    Ibraimov AI (1991) Cerumen phenotypes in certain populations of Eurasia and Africa. Am J Phys Anthropol 84(2):209–211, FebPubMedGoogle Scholar
  51. 51.
    Mendelian Inheritance in Man. Available online at: Accessed 1 December 2010
  52. 52.
    Burkhart CN, Kruge MA, Burkhart CG, Black C (2001) Cerumen composition by flash pyrolysis-gas chromatography/mass spectrometry. Otol Neurotol 22(6):715–722PubMedCrossRefGoogle Scholar
  53. 53.
    Bortz JT, Wertz PW, Downing DT (1990) Composition of cerumen lipids. J Am Acad Dermatol 23(5):845–849PubMedCrossRefGoogle Scholar
  54. 54.
    Okuda I, Bingham B, Stoney P, Hawke M (1991) The organic composition of earwax. J Otolaryngol 20(3):212–215, JunPubMedGoogle Scholar
  55. 55.
    Roeser RJ, Ballachanda BB (1997) Physiology, pathophysiology, and anthropology/epidemiology of human earcanal secretions. J Am Acad Audiol 8:391–400PubMedGoogle Scholar
  56. 56.
    Creed E, Negus VE (1926) Investigations regarding the function of aural cerumen. J Laryngol Otol 41:223–230CrossRefGoogle Scholar
  57. 57.
    Nichols AC, Perry ET (1956) Studies on the growth of bacteria in the human ear canal. J Invest Dermatol 27:165–170PubMedGoogle Scholar
  58. 58.
    Singer DE, Freeman E, Hoffert WR, Keys RJ, Mitchell RB, Hardy AV (1956) Otitis externa: bacteriological and mycological studies. Ann Otol Rhinol Laryngol 61:317–330Google Scholar
  59. 59.
    Campos A, Betancor L, Arias A, Rodríguez C, Hernández AM, López Aguado D, Sierra A (2000) Influence of human wet cerumen on the growth of common and pathogenic bacteria of the ear. J Laryngol Otol 114(12):925–929, DecPubMedCrossRefGoogle Scholar
  60. 60.
    Hyslop NE Jr (1971) Ear wax and host defense. N Engl J Med 284:1099–1100PubMedCrossRefGoogle Scholar
  61. 61.
    Petrakis NL, Doherty M, Lee RE, Smith SC, Page NL (1971) Demonstration and implications of lysozyme and immunoglobulins in human ear wax. Nature 229:119–120PubMedCrossRefGoogle Scholar
  62. 62.
    Chai TJ, Chai TC (1980) Bactericidal activity of cerumen. Antimicrob Agents Chemother 18(4):638–641PubMedGoogle Scholar
  63. 63.
    Lum CL, Jeyanthi S, Prepageran N, Vadivelu J, Raman R (2009) Antibacterial and antifungal properties of human cerumen. J Laryngol Otol 123:375–378, AugPubMedCrossRefGoogle Scholar
  64. 64.
    Pata YS, Ozturk C, Akbas Y, Gorur K, Unal M, Ozcan C (2003) Has cerumen a protective role in recurrent external otitis? Am J Otolaryngol 24(4):209–212, Jul–AugPubMedCrossRefGoogle Scholar
  65. 65.
    Stone M, Fulghum RS (1984) Bactericidal activity of wet cerumen. Ann Otol Rhinol Laryngol 93(2 Pt 1):183–186, Mar–AprPubMedGoogle Scholar
  66. 66.
    Stoeckelhuber M, Matthias C, Andratschke M, Stoeckelhuber BM, Koehler C, Herzmann S, Sulz A, Welsch U (2006) Human ceruminous gland: ultrastructure and histochemical analysis of antimicrobial and cytoskeletal components. Anat Rec A Discov Mol Cell Evol Biol 288:877–884PubMedGoogle Scholar
  67. 67.
    Meyer JE, Schwaab M, Beier UH, Görögh T, Buchelt T, Frese K, Maune S (2006) Association between human beta defensin expression and cholesteatoma formation. Auris Nasus Larynx 33(2):159–165, Epub 2006 Jan 23PubMedCrossRefGoogle Scholar
  68. 68.
    Bøe R, Silvola J, Yang J, Moens U, McCray PB Jr, Stenfors LE, Seljfelid R (1999) Human beta-defensin-1 mRNA is transcribed in tympanic membrane and adjacent auditory canal epithelium. Infect Immun 67(9):4843–4846PubMedGoogle Scholar
  69. 69.
    Yoon YJ, Jin Woo Park JW, Lee EJ (2008) Presence of hBD-1 and hBD-2 in human cerumen and external auditory canal skin. Acta Otolaryngol 128(8):871–875, AugPubMedCrossRefGoogle Scholar
  70. 70.
    Schwaab M, Hansen S, Gurr A, Schwaab T, Minovi A, Sudhoff H, Dazert S (2009) Protein isolation from ear wax made easy. Eur Arch Otorhinolaryngol 266(11):1699–1702, Epub 2009 Apr 4PubMedCrossRefGoogle Scholar
  71. 71.
    Jung HH, Chae SW, Jung SK, Kim ST, Lee HM, Hwang SJ (2003) Expression of a cathelicidin antimicrobial peptide is augmented in cholesteatoma. Laryngoscope 113:432–435PubMedCrossRefGoogle Scholar
  72. 72.
    Lee JK, Chae SW, Cho JG, Lee HM, Hwang SJ, Jung HH (2006) Expression of secretory leukocyte protease inhibitor in middle ear cholesteatoma. Eur Arch Otorhinolaryngol 263:1077–1081PubMedCrossRefGoogle Scholar
  73. 73.
    Robinson AC, Hawke M, Naiberg J (1990) Impacted cerumen: a disorder of keratinocyte separation in the superficial external ear canal? J Otolaryngol 19(2):86–90PubMedGoogle Scholar
  74. 74.
    Singh PK, Tack BF, McCray PB Jr, Welsh MJ (2000) Synergistic and additive killing by antimicrobial factors found in human airway surface liquid. Am J Physiol Lung Cell Mol Physiol 279(5):L799–L805PubMedGoogle Scholar
  75. 75.
    Chen X, Niyonsaba F, Ushio H, Okuda D, Nagaoka I, Ikeda S, Okumura K, Ogawa H (2005) Synergistic effect of antibacterial agents human beta-defensins, cathelicidin LL-37 and lysozyme against Staphylococcus aureus and Escherichia coli. J Dermatol Sci 40(2):123–132, Epub 2005 Jun 15PubMedCrossRefGoogle Scholar
  76. 76.
    Kim JK, Cho JH (2009) Change of external auditory canal pH in acute otitis externa. Ann Otol Rhinol Laryngol 118(11):769–772PubMedGoogle Scholar
  77. 77.
    Weber PC, Roland PS, Hannley M, Friedman R, Manolidis S, Matz G, Owens F, Rybak L, Stewart MG (2004) The development of antibiotic resistant organisms with the use of ototopical medications. Otolaryngol Head Neck Surg 130(3 Suppl):S89–S94PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2011

Authors and Affiliations

  • M. Schwaab
    • 1
    • 2
  • A. Gurr
    • 2
  • A. Neumann
    • 3
  • S. Dazert
    • 2
  • A. Minovi
    • 2
  1. 1.Department of Otorhinolarnygology, Head and Neck surgerySt. Marienhospital VechtaVechtaGermany
  2. 2.Department of Otorhinolarnygology, Head and Neck surgeryRuhr-University-BochumBochumGermany
  3. 3.Department for Ear-, Nose- and Throat-Disease, Head and Neck SurgeryLukaskrankenhausNeussGermany

Personalised recommendations