Utility of aptamer-fluorescence in situ hybridization for rapid detection of Pseudomonas aeruginosa

  • K.-Y. Wang
  • Y.-L. Zeng
  • X.-Y. Yang
  • W.-B. Li
  • X.-P. Lan
Brief Report


Pseudomonas aeruginosa, a ubiquitous Gram-negative bacteriuma, is considered one of the most important causes of nosocomial infections in immunocompromised patients with cancer, transplantation, burn or cystic fibrosis [1, 2, 3, 4]. Rapid and accurate identification of P. aeruginosa has important implications for the therapy and management of infectious diseases caused by P. aeruginosa. Numerous new methods such as immunoassays and molecular techniques have been developed for its detection. However, these techniques usually go through several steps including isolation, enrichment and/or purification and require sophisticated equipment and highly trained personnel, which increase the assay time and cost [5, 6]. As a result, culture remains the gold standard. The requirement for a potent new method to identify P. aeruginosa accurately, rapidly and simply is obvious and compelling.

It is well established that fluorescence in situ hybridization (FISH) is a highly valuable tool...


Acinetobacter Baumannii Peptide Nucleic Acid Probe Bright Green Fluorescence Aptamer Probe Selection Buffer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This work was supported by Key Program (No. 06G038) from the Military Medical Science and Technique Foundation during the 11th Five-Year Plan Period and the Natural Science Foundation of Fujian Province (No. 2010J05080).


  1. 1.
    Rolston KV, Bodey GP (1992) Pseudomonas aeruginosa infection in cancer patients. Cancer Invest 10(1):43–59CrossRefPubMedGoogle Scholar
  2. 2.
    Hashimoto M, Sugawara Y, Tamura S, Kaneko J, Matsui Y, Kokudo N, Makuuchi M (2009) Pseudomonas aeruginosa infection after living-donor liver transplantation in adults. Transpl Infect Dis 11(1):11–19CrossRefPubMedGoogle Scholar
  3. 3.
    McManus AT (1989) Pseudomonas aeruginosa: a controlled burn pathogen? Antibiot Chemother 42:103–108PubMedGoogle Scholar
  4. 4.
    Murray TS, Egan M, Kazmierczak BI (2007) Pseudomonas aeruginosa chronic colonization in cystic fibrosis patients. Curr Opin Pediatr 19(1):83–88CrossRefPubMedGoogle Scholar
  5. 5.
    Weisner AM, Chart H, Bush A, Davies JC, Pitt TL (2007) Detection of antibodies to Pseudomonas aeruginosa in serum and oral fluid from patients with cystic fibrosis. J Med Microbiol 56(Pt 5):670–674CrossRefPubMedGoogle Scholar
  6. 6.
    Xu J, Moore JE, Murphy PG, Millar BC, Elborn JS (2004) Early detection of Pseudomonas aeruginosa—comparison of conventional versus molecular (PCR) detection directly from adult patients with cystic fibrosis (CF). Ann Clin Microbiol Antimicrob 3:21CrossRefPubMedGoogle Scholar
  7. 7.
    Bottari B, Ercolini D, Gatti M, Neviani E (2006) Application of FISH technology for microbiological analysis: current state and prospects. Appl Microbiol Biotechnol 73(3):485–494CrossRefPubMedGoogle Scholar
  8. 8.
    Pfaller MA, Barrett M, Koontz FP, Wenzel RP, Cunningham MD, Rollins N, Darveau RP (1989) Clinical evaluation of a direct fluorescent monoclonal antibody test for detection of Pseudomonas aeruginosa in blood cultures. J Clin Microbiol 27(3):558–560PubMedGoogle Scholar
  9. 9.
    Hogardt M, Trebesius K, Geiger AM, Hornef M, Rosenecker J, Heesemann J (2000) Specific and rapid detection by fluorescent in situ hybridization of bacteria in clinical samples obtained from cystic fibrosis patients. J Clin Microbiol 38(2):818–825PubMedGoogle Scholar
  10. 10.
    Peleg AY, Tilahun Y, Fiandaca MJ, D'Agata EM, Venkataraman L, Moellering RC Jr, Eliopoulos GM (2009) Utility of peptide nucleic acid fluorescence in situ hybridization for rapid detection of Acinetobacter spp. and Pseudomonas aeruginosa. J Clin Microbiol 47(3):830–832CrossRefPubMedGoogle Scholar
  11. 11.
    Ellington AD, Szostak JW (1990) In vitro selection of RNA molecules that bind specific ligands. Nature 346(6287):818–822CrossRefPubMedGoogle Scholar
  12. 12.
    Tuerk C, Gold L (1990) Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 249(4968):505–510CrossRefPubMedGoogle Scholar
  13. 13.
    Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ (1992) Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 355(6360):564–566CrossRefPubMedGoogle Scholar
  14. 14.
    Ellington AD, Szostak JW (1992) Selection in vitro of single-stranded DNA molecules that fold into specific ligand-binding structures. Nature 355(6363):850–852CrossRefPubMedGoogle Scholar
  15. 15.
    Stoltenburg R, Reinemann C, Strehlitz B (2007) SELEX–a (r)evolutionary method to generate high-affinity nucleic acid ligands. Biomol Eng 24(4):381–403CrossRefPubMedGoogle Scholar
  16. 16.
    Schmidt KS, Borkowski S, Kurreck J, Stephens AW, Bald R, Hecht M, Friebe M, Dinkelborg L, Erdmann VA (2004) Application of locked nucleic acids to improve aptamer in vivo stability and targeting function. Nucleic Acids Res 32(19):5757–5765CrossRefPubMedGoogle Scholar
  17. 17.
    Bruno JG, Kiel JL (1999) In vitro selection of DNA aptamers to anthrax spores with electrochemiluminescence detection. Biosens Bioelectron 14(5):457–464CrossRefPubMedGoogle Scholar
  18. 18.
    Ikanovic M, Rudzinski WE, Bruno JG, Allman A, Carrillo MP, Dwarakanath S, Bhahdigadi S, Rao P, Kiel JL, Andrews CJ (2007) Fluorescence assay based on aptamer-quantum dot binding to Bacillus thuringiensis spores. J Fluoresc 17(2):193–199CrossRefPubMedGoogle Scholar
  19. 19.
    So HM, Park DW, Jeon EK, Kim YH, Kim BS, Lee CK, Choi SY, Kim SC, Chang H, Lee JO (2008) Detection and titer estimation of Escherichia coli using aptamer-functionalized single-walled carbon-nanotube field-effect transistors. Small 4(2):197–201CrossRefPubMedGoogle Scholar
  20. 20.
    Shangguan D, Cao Z, Meng L, Mallikaratchy P, Sefah K, Wang H, Li Y, Tan W (2008) Cell-specific aptamer probes for membrane protein elucidation in cancer cells. J Proteome Res 7(5):2133–2139CrossRefPubMedGoogle Scholar
  21. 21.
    Shangguan D, Li Y, Tang Z, Cao ZC, Chen HW, Mallikaratchy P, Sefah K, Yang CJ, Tan W (2006) Aptamers evolved from live cells as effective molecular probes for cancer study. Proc Natl Acad Sci USA 103(32):11838–11843CrossRefPubMedGoogle Scholar
  22. 22.
    Torres-Chavolla E, Alocilja EC (2009) Aptasensors for detection of microbial and viral pathogens. Biosens Bioelectron 24(11):3175–3182CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • K.-Y. Wang
    • 1
  • Y.-L. Zeng
    • 1
  • X.-Y. Yang
    • 1
  • W.-B. Li
    • 1
  • X.-P. Lan
    • 1
  1. 1.Institute for Laboratory MedicineFuzhou General HospitalFuzhouChina

Personalised recommendations