Eradication of the commensal intestinal microflora by oral antimicrobials interferes with the host response to lipopolysaccharide

  • T. Umenai
  • H. Hirai
  • N. Shime
  • T. Nakaya
  • T. Asahara
  • K. Nomoto
  • M. Kita
  • Y. Tanaka
  • J. Imanishi


The host components and commensal microorganisms of the intestinal microenvironment play roles in the development and maintenance of the host defence. Recent observations have suggested that toll-like receptors (TLRs) are involved in the recognition of innate immunity against intestinal microbes. However, little is known regarding the role of TLR in the maintenance of systemic host defence by intestinal microorganisms. We studied the expression and function of TLR4 and TLR2 on alveolar and peritoneal macrophages in mice after 3 weeks of oral administration of streptomycin and cefotaxime. After active treatment, the intestinal microorganisms were nearly completely eradicated, and the surface expression of TLR4 and TLR2 on the peritoneal macrophages was prominently downregulated. When the actively treated mice were challenged with lipopolysaccharide (LPS), a TLR4 ligand, the host response was markedly impaired. Our results suggest that the oral administration of antimicrobials downregulates the expression of surface TLR on the peritoneal macrophages and modulates the host immune responses against LPS by modifying the intestinal environment.


  1. 1.
    Tlaskalova-Hogenova H, Tuckova L, Mestecky J, Kolinska J, Rossmann P, Stepankova R, Kozakova H, Hudcovic T, Hrncir T, Frolova L, Kverka M (2005) Interaction of mucosal microbiota with the innate immune system. Scand J Immunol 62(Suppl 1):106–113CrossRefPubMedGoogle Scholar
  2. 2.
    Kelly D, King T, Aminov R (2007) Importance of microbial colonization of the gut in early life to the development of immunity. Mutat Res 622:58–69PubMedGoogle Scholar
  3. 3.
    Pospísil R, Trebichavsky I, Sinkora J, Lipoldová M, Mandel L, Tucková L, Rejnek J (1995) Expression of Thy-1 antigen in germ-free and conventional piglets. Adv Exp Med Biol 371A:453–457PubMedGoogle Scholar
  4. 4.
    Bos NA, Ploplis VA (1994) Humoral immune response to 2,4-dinitrophenyl—keyhole limpet hemocyanin in antigen-free, germ-free and conventional BALB/c mice. Eur J Immunol 24:59–65CrossRefPubMedGoogle Scholar
  5. 5.
    Asahara T, Nomoto K, Shimizu K, Watanuki M, Tanaka R (2001) Increased resistance of mice to Salmonella enterica serovar Typhimurium infection by synbiotic administration of Bifidobacteria and transgalactosylated oligosaccharides. J Appl Microbiol 91:985–996CrossRefPubMedGoogle Scholar
  6. 6.
    Asahara T, Shimizu K, Nomoto K, Hamabata T, Ozawa A, Takeda Y (2004) Probiotic bifidobacteria protect mice from lethal infection with Shiga toxin-producing Escherichia coli O157:H7. Infect Immun 72:2240–2247CrossRefPubMedGoogle Scholar
  7. 7.
    Barza M, Giuliano M, Jacobus NV, Gorbach SL (1987) Effect of broad-spectrum parenteral antibiotics on “colonization resistance” of intestinal microflora of humans. Antimicrob Agents Chemother 31:723–727PubMedGoogle Scholar
  8. 8.
    Huang T, Wei B, Velazquez P, Borneman J, Braun J (2005) Commensal microbiota alter the abundance and TCR responsiveness of splenic naïve CD4+ T lymphocytes. Clin Immunol 117:221–230CrossRefPubMedGoogle Scholar
  9. 9.
    Corthésy B, Gaskins HR, Mercenier A (2007) Cross-talk between probiotic bacteria and the host immune system. J Nutr 137:781S–790SPubMedGoogle Scholar
  10. 10.
    Cebra JJ (1999) Influences of microbiota on intestinal immune system development. Am J Clin Nutr 69:1046S–1051SPubMedGoogle Scholar
  11. 11.
    Noverr MC, Huffnagle GB (2004) Does the microbiota regulate immune responses outside the gut? Trends Microbiol 12:562–568CrossRefPubMedGoogle Scholar
  12. 12.
    Wickens K, Pearce N, Crane J, Beasley R (1999) Antibiotic use in early childhood and the development of asthma. Clin Exp Allergy 29:766–771CrossRefPubMedGoogle Scholar
  13. 13.
    Kalliomäki M, Kirjavainen P, Eerola E, Kero P, Salminen S, Isolauri E (2001) Distinct patterns of neonatal gut microflora in infants in whom atopy was and was not developing. J Allergy Clin Immunol 107:129–134CrossRefPubMedGoogle Scholar
  14. 14.
    Kirjavainen PV, Apostolou E, Arvola T, Salminen SJ, Gibson GR, Isolauri E (2001) Characterizing the composition of intestinal microflora as a prospective treatment target in infant allergic disease. FEMS Immunol Med Microbiol 32:1–7CrossRefPubMedGoogle Scholar
  15. 15.
    Mitchell JA, Paul-Clark MJ, Clarke GW, McMaster SK, Cartwright N (2007) Critical role of toll-like receptors and nucleotide oligomerisation domain in the regulation of health and disease. J Endocrinol 193:323–330CrossRefPubMedGoogle Scholar
  16. 16.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801CrossRefPubMedGoogle Scholar
  17. 17.
    Netea MG, Van der Meer JW, Sutmuller RP, Adema GJ, Kullberg BJ (2005) From the Th1/Th2 paradigm towards a Toll-like receptor/T-helper bias. Antimicrob Agents Chemother 49:3991–3996CrossRefPubMedGoogle Scholar
  18. 18.
    Rakoff-Nahoum S, Paglino J, Eslami-Varzaneh F, Edberg S, Medzhitov R (2004) Recognition of commensal microflora by toll-like receptors is required for intestinal homeostasis. Cell 118:229–241CrossRefPubMedGoogle Scholar
  19. 19.
    Kikuchi H, Yajima T (1992) Correlation between water-holding capacity of different types of cellulose in vitro and gastrointestinal retention time in vivo of rats. J Sci Food Agric 60:139–146CrossRefGoogle Scholar
  20. 20.
    Yamamoto M, Yamazaki S, Uematsu S, Sato S, Hemmi H, Hoshino K, Kaisho T, Kuwata H, Takeuchi O, Takeshige K, Saitoh T, Yamaoka S, Yamamoto N, Yamamoto S, Muta T, Takeda K, Akira S (2004) Regulation of Toll/IL-1-receptor-mediated gene expression by the inducible nuclear protein IkappaBzeta. Nature 430:218–222CrossRefPubMedGoogle Scholar
  21. 21.
    Hirotani T, Lee PY, Kuwata H, Yamamoto M, Matsumoto M, Kawase I, Akira S, Takeda K (2005) The nuclear IkappaB protein IkappaBNS selectively inhibits lipopolysaccharide-induced IL-6 production in macrophages of the colonic lamina propria. J Immunol 174:3650–3657PubMedGoogle Scholar
  22. 22.
    Sharma RJ, Macallan DC, Sedgwick P, Remick DG, Griffin GE (1992) Kinetics of endotoxin-induced acute-phase protein gene expression and its modulation by TNF-alpha monoclonal antibody. Am J Physiol 262:R786–R793PubMedGoogle Scholar
  23. 23.
    Swerdlow MP, Kennedy DR, Kennedy JS, Washabau RJ, Henthorn PS, Moore PF, Carding SR, Felsburg PJ (2006) Expression and function of TLR2, TLR4, and Nod2 in primary canine colonic epithelial cells. Vet Immunol Immunopathol 114:313–319CrossRefPubMedGoogle Scholar
  24. 24.
    Medvedev AE, Piao W, Shoenfelt J, Rhee SH, Chen H, Basu S, Wahl LM, Fenton MJ, Vogel SN (2007) Role of TLR4 tyrosine phosphorylation in signal transduction and endotoxin tolerance. J Biol Chem 282:16042–16053CrossRefPubMedGoogle Scholar
  25. 25.
    Anand RJ, Kohler JW, Cavallo JA, Li J, Dubowski T, Hackam DJ (2007) Toll-like receptor 4 plays a role in macrophage phagocytosis during peritoneal sepsis. J Pediatr Surg 42:927–932, discussion 933CrossRefPubMedGoogle Scholar
  26. 26.
    Simitsopoulou M, Roilides E, Paliogianni F, Likartsis C, Ioannidis J, Kanellou K, Walsh TJ (2008) Immunomodulatory effects of voriconazole on monocytes challenged with Aspergillus fumigatus: differential role of Toll-like receptors. Antimicrob Agents Chemother 52:3301–3306CrossRefPubMedGoogle Scholar
  27. 27.
    Ziegeler S, Raddatz A, Hoff G, Buchinger H, Bauer I, Stockhausen A, Sasse H, Sandmann I, Hörsch S, Rensing H (2006) Antibiotics modulate the stimulated cytokine response to endotoxin in a human ex vivo, in vitro model. Acta Anaesthesiol Scand 50:1103–1110CrossRefPubMedGoogle Scholar
  28. 28.
    Yasutomi M, Ohshima Y, Omata N, Yamada A, Iwasaki H, Urasaki Y, Mayumi M (2005) Erythromycin differentially inhibits lipopolysaccharide- or poly(I:C)-induced but not peptidoglycan-induced activation of human monocyte-derived dendritic cells. J Immunol 175:8069–8076PubMedGoogle Scholar
  29. 29.
    Akashi S, Shimazu R, Ogata H, Nagai Y, Takeda K, Kimoto M, Miyake K (2000) Cutting edge: cell surface expression and lipopolysaccharide signaling via the toll-like receptor 4-MD-2 complex on mouse peritoneal macrophages. J Immunol 164:3471–3475PubMedGoogle Scholar
  30. 30.
    Saitoh S, Miyake K (2006) Mechanism regulating cell surface expression and activation of Toll-like receptor 4. Chem Rec 6:311–319CrossRefPubMedGoogle Scholar
  31. 31.
    Fujimoto T, Yamazaki S, Eto-Kimura A, Takeshige K, Muta T (2004) The amino-terminal region of toll-like receptor 4 is essential for binding to MD-2 and receptor translocation to the cell surface. J Biol Chem 279:47431–47437CrossRefPubMedGoogle Scholar
  32. 32.
    Wakabayashi Y, Kobayashi M, Akashi-Takamura S, Tanimura N, Konno K, Takahashi K, Ishii T, Mizutani T, Iba H, Kouro T, Takaki S, Takatsu K, Oda Y, Ishihama Y, Saitoh S, Miyake K (2006) A protein associated with toll-like receptor 4 (PRAT4A) regulates cell surface expression of TLR4. J Immunol 177:1772–1779PubMedGoogle Scholar
  33. 33.
    Saitoh SI (2009) Chaperones and transport proteins regulate TLR4 trafficking and activation. Immunobiology [Epub ahead of print]Google Scholar
  34. 34.
    Yanagimoto S, Tatsuno K, Okugawa S, Kitazawa T, Tsukada K, Koike K, Kodama T, Kimura S, Shibasaki Y, Ota Y (2009) A single amino acid of toll-like receptor 4 that is pivotal for its signal transduction and subcellular localization. J Biol Chem 284:3513–3520CrossRefPubMedGoogle Scholar
  35. 35.
    Visintin A, Halmen KA, Khan N, Monks BG, Golenbock DT, Lien E (2006) MD-2 expression is not required for cell surface targeting of Toll-like receptor 4 (TLR4). J Leukoc Biol 80:1584–1592CrossRefPubMedGoogle Scholar
  36. 36.
    Begon E, Michel L, Flageul B, Beaudoin I, Jean-Louis F, Bachelez H, Dubertret L, Musette P (2007) Expression, subcellular localization and cytokinic modulation of Toll-like receptors (TLRs) in normal human keratinocytes: TLR2 up-regulation in psoriatic skin. Eur J Dermatol 17:497–506PubMedGoogle Scholar
  37. 37.
    Muzio M, Bosisio D, Polentarutti N, D’Amico G, Stoppacciaro A, Mancinelli R, van’t Veer C, Penton-Rol G, Ruco LP, Allavena P, Mantovani A (2000) Differential expression and regulation of toll-like receptors (TLR) in human leukocytes: selective expression of TLR3 in dendritic cells. J Immunol 164:5998–6004PubMedGoogle Scholar
  38. 38.
    Mita Y, Dobashi K, Shimizu Y, Nakazawa T, Mori M (2001) Toll-like receptor 2 and 4 surface expressions on human monocytes are modulated by interferon-gamma and macrophage colony-stimulating factor. Immunol Lett 78:97–101CrossRefPubMedGoogle Scholar
  39. 39.
    Mita Y, Dobashi K, Endou K, Kawata T, Shimizu Y, Nakazawa T, Mori M (2002) Toll-like receptor 4 surface expression on human monocytes and B cells is modulated by IL-2 and IL-4. Immunol Lett 81:71–75CrossRefPubMedGoogle Scholar
  40. 40.
    Shimura H, Nitahara A, Ito A, Tomiyama K, Ito M, Kawai K (2005) Up-regulation of cell surface Toll-like receptor 4-MD2 expression on dendritic epidermal T cells after the emigration from epidermis during cutaneous inflammation. J Dermatol Sci 37:101–110CrossRefPubMedGoogle Scholar
  41. 41.
    Frleta D, Noelle RJ, Wade WF (2003) CD40-mediated up-regulation of Toll-like receptor 4-MD2 complex on the surface of murine dendritic cells. J Leukocyte Biol 74:1064–1073CrossRefPubMedGoogle Scholar
  42. 42.
    Nicaise P, Gleizes A, Sandre C, Forestier F, Kergot R, Quero AM, Labarre C (1998) Influence of intestinal microflora on murine bone marrow and spleen macrophage precursors. Scand J Immunol 48:585–591CrossRefPubMedGoogle Scholar
  43. 43.
    Brandl K, Plitas G, Mihu CN, Ubeda C, Jia T, Fleisher M, Schnabl B, DeMatteo RP, Pamer EG (2008) Vancomycin-resistant enterococci exploit antibiotic-induced innate immune deficits. Nature 455:804–807CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2010

Authors and Affiliations

  • T. Umenai
    • 1
  • H. Hirai
    • 2
  • N. Shime
    • 1
  • T. Nakaya
    • 3
  • T. Asahara
    • 4
  • K. Nomoto
    • 4
  • M. Kita
    • 2
  • Y. Tanaka
    • 1
  • J. Imanishi
    • 2
  1. 1.Department of Anesthesiology and Intensive Care, University HospitalKyoto Prefectural University of MedicineKyotoJapan
  2. 2.Department of Microbiology and ImmunologyKyoto Prefectural University of MedicineKyotoJapan
  3. 3.International Research Centre for Infectious Diseases, Research Institute for Microbial DiseasesOsaka UniversityOsakaJapan
  4. 4.Yakult Central Institute for Microbiological ResearchTokyoJapan

Personalised recommendations