Development of a real-time PCR for the specific detection of Waddlia chondrophila in clinical samples

  • G. Goy
  • A. Croxatto
  • K. M. Posfay-Barbe
  • A. Gervaix
  • G. Greub
Brief Report

Abstract

Waddlia chondrophila is considered as an emerging human pathogen likely involved in miscarriage and lower respiratory tract infections. Given the low sensitivity of cell culture to recover such an obligate intracellular bacteria, molecular-based diagnostic approaches are warranted. We thus developed a real-time PCR that amplifies Waddlia chondrophila DNA. Specific primers and probe were selected to target the 16S rRNA gene. The PCR specifically amplified W. chondrophila but did not amplify other related-bacteria such as Parachlamydia acanthamoebae, Simkania negevensis and Chlamydia pneumoniae. The PCR exhibited a good intra-run and inter-run reproducibility and a sensitivity of less than ten copies of the positive control. This real-time PCR was then applied to 32 nasopharyngeal aspirates taken from children with bronchiolitis not due to respiratory syncytial virus (RSV). Three samples revealed to be Waddlia positive, suggesting a possible role of this Chlamydia-related bacteria in this setting.

References

  1. 1.
    Greub G, Raoult D (2002) Parachlamydiaceae: potential emerging pathogens. Emerg Infect Dis 8(6):625–630PubMedGoogle Scholar
  2. 2.
    Corsaro D, Feroldi V, Saucedo G, Ribas F, Loret JF, Greub G (2009) Novel Chlamydiales strains isolated from a water treatment plant. Environ Microbiol 11(1):188–200. doi:10.1111/j.1462-2920.2008.01752.x CrossRefPubMedGoogle Scholar
  3. 3.
    Everett KD, Andersen AA (1997) The ribosomal intergenic spacer and domain I of the 23S rRNA gene are phylogenetic markers for Chlamydia spp. Int J Syst Bacteriol 47(2):461–473PubMedCrossRefGoogle Scholar
  4. 4.
    Friedman MG, Dvoskin B, Kahane S (2003) Infections with the chlamydia-like microorganism Simkania negevensis, a possible emerging pathogen. Microbes Infect 5(11):1013–1021. doi:10.1016/S1286-4579(03)00188-6 CrossRefPubMedGoogle Scholar
  5. 5.
    Greub G (2009) Parachlamydia acanthamoebae, an emerging agent of pneumonia. Clin Microbiol Infect 15(1):18–28. doi:10.1111/j.1469-0691.2008.02633.x CrossRefPubMedGoogle Scholar
  6. 6.
    Dilbeck PM, Evermann JF, Crawford TB, Ward AC, Leathers CW, Holland CJ, Mebus CA, Logan LL, Rurangirwa FR, McGuire TC (1990) Isolation of a previously undescribed rickettsia from an aborted bovine fetus. J Clin Microbiol 28(4):814–816PubMedGoogle Scholar
  7. 7.
    Henning K, Schares G, Granzow H, Polster U, Hartmann M, Hotzel H, Sachse K, Peters M, Rauser M, Henning K, Schares G, Granzow H, Polster U, Hartmann M, Hotzel H, Sachse K, Peters M, Rauser M (2002) Neospora caninum and Waddlia chondrophila strain 2032/99 in a septic stillborn calf. Vet Microbiol 85(3):285–292. doi:10.1016/S0378-1135(01)00510-7 CrossRefPubMedGoogle Scholar
  8. 8.
    Baud D, Thomas V, Arafa A, Regan L, Greub G (2007) Waddlia chondrophila, a potential agent of human fetal death. Emerg Infect Dis 13(8):1239–1243PubMedGoogle Scholar
  9. 9.
    Haider S, Collingro A, Walochnik J, Wagner M, Horn M (2008) Chlamydia-like bacteria in respiratory samples of community-acquired pneumonia patients. FEMS Microbiol Lett 281(2):198–202. doi:10.1111/j.1574-6968.2008.01099.x CrossRefPubMedGoogle Scholar
  10. 10.
    Goy G, Croxatto A, Greub G (2008) Waddlia chondrophila enters and multiplies within human macrophages. Microbes Infect 10(5):556–562. doi:10.1016/j.micinf.2008.02.003 CrossRefPubMedGoogle Scholar
  11. 11.
    Rozen S, Skaletsky H (2000) Primer3 on the WWW for general users and for biologist programmers. Methods Mol Biol 132:365–386PubMedGoogle Scholar
  12. 12.
    Casson N, Medico N, Bille J, Greub G (2006) Parachlamydia acanthamoebae enters and multiplies within pneumocytes and lung fibroblasts. Microbes Infect 8(5):1294–1300. doi:10.1016/j.micinf.2005.12.011 CrossRefPubMedGoogle Scholar
  13. 13.
    Casson N, Michel R, Muller KD, Aubert JD, Greub G (2008) Protochlamydia naegleriophila as etiologic agent of pneumonia. Emerg Infect Dis 14(1):168–172CrossRefPubMedGoogle Scholar
  14. 14.
    Casson N, Posfay-Barbe KM, Gervaix A, Greub G (2008) New diagnostic real-time PCR for specific detection of Parachlamydia acanthamoebae DNA in clinical samples. J Clin Microbiol 46(4):1491–1493. doi:10.1128/JCM.02302-07 CrossRefPubMedGoogle Scholar
  15. 15.
    Jaton K, Bille J, Greub G (2006) A novel real-time PCR to detect Chlamydia trachomatis in first-void urine or genital swabs. J Med Microbiol 55(12):1667–1674. doi:10.1099/jmm.0.46675-0 CrossRefPubMedGoogle Scholar
  16. 16.
    Thomas V, Herrera-Rimann K, Blanc DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72(4):2428–2438. doi:10.1128/AEM.72.4.2428-2438.2006 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • G. Goy
    • 1
  • A. Croxatto
    • 1
  • K. M. Posfay-Barbe
    • 2
  • A. Gervaix
    • 2
  • G. Greub
    • 1
  1. 1.Center for Research on Intracellular Bacteria, Institute of MicrobiologyUniversity Hospital Center and University of Lausanne LausanneSwitzerland
  2. 2.Children’s Hospital of GenevaUniversity Hospitals of GenevaGenevaSwitzerland

Personalised recommendations