The unusual antibacterial activity of medical-grade Leptospermum honey: antibacterial spectrum, resistance and transcriptome analysis

  • S. E. Blair
  • N. N. Cokcetin
  • E. J. Harry
  • D. A. CarterEmail author


There is an urgent need for new, effective agents in topical wound care, and selected honeys show potential in this regard. Using a medical-grade honey, eight species of problematic wound pathogens, including those with high levels of innate or acquired antibiotic resistance, were killed by 4.0–14.8% honey, which is a concentration that can be maintained in the wound environment. Resistance to honey could not be induced under conditions that rapidly induced resistance to antibiotics. Escherichia coli macroarrays were used to determine the response of bacterial cells to a sub-lethal dose of honey. The pattern of gene expression differed to that reported for other antimicrobial agents, indicating that honey acts in a unique and multifactorial way; 78 (2%) genes were upregulated and 46 (1%) genes were downregulated more than two-fold upon exposure to the medical-grade honey. Most of the upregulated genes clustered into distinct functional regulatory groups, with many involved in stress responses, and the majority of downregulated genes encoded for products involved in protein synthesis. Taken together, these data indicate that honey is an effective topical antimicrobial agent that could help reduce some of the current pressures that are promoting antibiotic resistance.


Methylglyoxal Oxacillin Minimum Bactericidal Concentration Honey Solution Manuka Honey 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to thank the Royal Prince Alfred Hospital (RPA), Sydney, Australia, for supplying the clinical isolates. We are grateful to those who supplied the honeys for these investigations (Dr. Somerville, Senior Apiary Officer, NSW Department of Primary Industries, Australia; Capilano Honey Ltd., Brisbane, Australia; Medihoney Pty Ltd., Brisbane, Australia; and Comvita New Zealand Ltd., Paengaroa, New Zealand). Funding for this project was supplied by the Australian Rural Industries Research and Development, Honeybee Research Program (Grant US-128A).

Supplementary material

10096_2009_763_MOESM1_ESM.doc (78 kb)
Supplementary Table S1 (DOC 77 kb)
10096_2009_763_MOESM2_ESM.doc (16 kb)
Supplementary Figure S1 (DOC 16 kb)


  1. 1.
    Payne DJ, Gwynn MN, Holmes DJ, Pompliano DL (2007) Drugs for bad bugs: confronting the challenges of antibacterial discovery. Nat Rev Drug Discov 6:29–40. doi: 10.1038/nrd2201 PubMedCrossRefGoogle Scholar
  2. 2.
    Levy SB, Marshall B (2004) Antibacterial resistance worldwide: causes, challenges and responses. Nat Med 10:S122–S129. doi: 10.1038/nm1145 PubMedCrossRefGoogle Scholar
  3. 3.
    Paterson DL (2006) The epidemiological profile of infections with multidrug-resistant Pseudomonas aeruginosa and Acinetobacter species. Clin Infect Dis 43:S43–S48. doi: 10.1086/504476 PubMedCrossRefGoogle Scholar
  4. 4.
    Spellberg B, Guidos R, Gilbert D, Bradley J, Boucher HW, Scheld WM, Bartlett JG, Edwards J Jr; Infectious Diseases Society of America (2008) The epidemic of antibiotic-resistant infections: a call to action for the medical community from the Infectious Diseases Society of America. Clin Infect Dis 46:155–164. doi: 10.1086/524891 PubMedCrossRefGoogle Scholar
  5. 5.
    Goldstein F (2007) The potential clinical impact of low-level antibiotic resistance in Staphylococcus aureus. J Antimicrob Chemother 59:1–4. doi: 10.1093/jac/dkl429 PubMedCrossRefGoogle Scholar
  6. 6.
    Cui LZ, Iwamoto A, Lian JQ, Neoh HM, Maruyama T, Horikawa Y, Hiramatsu K (2006) Novel mechanism of antibiotic resistance originating in vancomycin-intermediate Staphylococcus aureus. Antimicrob Agents Chemother 50:428–438. doi: 10.1128/AAC.50.2.428-438.2006 PubMedCrossRefGoogle Scholar
  7. 7.
    Quentin C, Arpin C, Dubois V, André C, Lagrange I, Fischer I, Brochet JP, Grobost F, Jullin J, Dutilh B, Larribet G, Noury P (2004) Antibiotic resistance rates and phenotypes among isolates of Enterobacteriaceae in French extra-hospital practice. Eur J Clin Microbiol Infect Dis 23:185–193. doi: 10.1007/s10096-003-1081-5 PubMedCrossRefGoogle Scholar
  8. 8.
    Jain R, Danziger LH (2004) Multidrug-resistant Acinetobacter infections: an emerging challenge to clinicians. Ann Pharmacother 38:1449–1459. doi: 10.1345/aph.1D592 PubMedCrossRefGoogle Scholar
  9. 9.
    Hujer KM, Hujer AM, Hulten EA, Bajaksouzian S, Adams JM, Donskey CJ, Ecker DJ, Massire C, Eshoo MW, Sampath R, Thomson JM, Rather PN, Craft DW, Fishbain JT, Ewell AJ, Jacobs MR, Paterson DL, Bonomo RA (2006) Analysis of antibiotic resistance genes in multidrug-resistant Acinetobacter sp. isolates from military and civilian patients treated at the Walter Reed Army Medical Center. Antimicrob Agents Chemother 50:4114–4123. doi: 10.1128/AAC.00778-06 PubMedCrossRefGoogle Scholar
  10. 10.
    O’Callaghan A, Redmond HP (2006) Treatment of sepsis: current status of clinical immunotherapy. Surgeon 4:355–361PubMedCrossRefGoogle Scholar
  11. 11.
    Weigelt J, Itani K, Stevens D, Lau W, Dryden M, Knirsch C; Linezolid CSSTI Study Group (2005) Linezolid versus vancomycin in treatment of complicated skin and soft tissue infections. Antimicrob Agents Chemother 49:2260–2266. doi: 10.1128/AAC.49.6.2260-2266.2005 PubMedCrossRefGoogle Scholar
  12. 12.
    Livermore DM, Woodford N (2006) The beta-lactamase threat in Enterobacteriaceae, Pseudomonas and Acinetobacter. Trends Microbiol 14:413–420. doi: 10.1016/j.tim.2006.07.008 PubMedCrossRefGoogle Scholar
  13. 13.
    Molan PC (2006) The evidence supporting the use of honey as a wound dressing. Int J Low Extrem Wounds 5:40–54. doi: 10.1177/1534734605286014 PubMedCrossRefGoogle Scholar
  14. 14.
    Gethin GT, Cowman S, Conroy RM (2008) The impact of Manuka honey dressings on the surface pH of chronic wounds. Int Wound J 5:185–194. doi: 10.1111/j.1742-481X.2007.00424.x PubMedCrossRefGoogle Scholar
  15. 15.
    Lotfi A (2008) Use of honey as a medicinal product in wound dressing (human and animal studies): a review. Res J Bio Sci 3:136–140Google Scholar
  16. 16.
    Jull A, Walker N, Parag V, Molan P, Rodgers A; Honey as Adjuvant Leg Ulcer Therapy trial collaborators (2008) Randomized clinical trial of honey-impregnated dressings for venous leg ulcers. Br J Surg 95:175–182. doi: 10.1002/bjs.6059 PubMedCrossRefGoogle Scholar
  17. 17.
    Visavadia BG, Honeysett J, Danford MH (2008) Manuka honey dressing: an effective treatment for chronic wound infections. Br J Oral Maxillofac Surg 46:55–56. doi: 10.1016/j.bjoms.2006.09.013 PubMedCrossRefGoogle Scholar
  18. 18.
    Emsen IM (2007) A different and safe method of split thickness skin graft fixation: medical honey application. Burns 33:782–787. doi: 10.1016/j.burns.2006.12.005 PubMedCrossRefGoogle Scholar
  19. 19.
    Blaser G, Santos K, Bode U, Vetter H, Simon A (2007) Effect of medical honey on wounds colonised or infected with MRSA. J Wound Care 16:325–328PubMedGoogle Scholar
  20. 20.
    Simon A, Sofka K, Wiszniewsky G, Blaser G, Bode U, Fleischhack G (2006) Wound care with antibacterial honey (Medihoney) in pediatric hematology-oncology. Support Care Cancer 14:91–97. doi: 10.1007/s00520-005-0874-8 PubMedCrossRefGoogle Scholar
  21. 21.
    Molan PC (1992) The antibacterial activity of honey. 1. The nature of the antibacterial activity. Bee World 73:5–28Google Scholar
  22. 22.
    White JW Jr, Subers MH, Schepartz AI (1963) The identification of inhibine, the antibacterial factor in honey, as hydrogen peroxide and its origin in a honey glucose-oxidase system. Biochim Biophys Acta 73:57–70. doi: 10.1016/0006-3002(63)90359-7 PubMedCrossRefGoogle Scholar
  23. 23.
    Allen KL, Molan PC, Reid GM (1991) A survey of the antibacterial activity of some New Zealand honeys. J Pharm Pharmacol 43:817–822PubMedGoogle Scholar
  24. 24.
    Adams CJ, Boult CH, Deadman BJ, Farr JM, Grainger MNC, Manley-Harris M, Snow MJ (2008) Isolation by HPLC and characterisation of the bioactive fraction of New Zealand manuka (Leptospermum scoparium) honey. Carbohydr Res 343:651–659. doi: 10.1016/j.carres.2007.12.011 PubMedCrossRefGoogle Scholar
  25. 25.
    Mavric E, Wittmann S, Barth G, Henle T (2008) Identification and quantification of methylglyoxal as the dominant antibacterial constituent of Manuka (Leptospermum scoparium) honeys from New Zealand. Mol Nutr Food Res 52:483–489. doi: 10.1002/mnfr.200700282 PubMedCrossRefGoogle Scholar
  26. 26.
    Kalapos MP (2008) The tandem of free radicals and methylglyoxal. Chem Biol Interact 171:251–271. doi: 10.1016/j.cbi.2007.11.009 PubMedCrossRefGoogle Scholar
  27. 27.
    Brazas MD, Hancock REW (2005) Using microarray gene signatures to elucidate mechanisms of antibiotic action and resistance. Drug Discov Today 10:1245–1252. doi: 10.1016/S1359-6446(05)03566-X PubMedCrossRefGoogle Scholar
  28. 28.
    Hancock RE (2007) The complexities of antibiotic action. Mol Syst Biol 3:142. doi: 10.1038/msb4100184 PubMedCrossRefGoogle Scholar
  29. 29.
    Hutter B, Schaab C, Albrecht S, Borgmann M, Brunner NA, Freiberg C, Ziegelbauer K, Rock CO, Ivanov I, Loferer H (2004) Prediction of mechanisms of action of antibacterial compounds by gene expression profiling. Antimicrob Agents Chemother 48:2838–2844. doi: 10.1128/AAC.48.8.2838-2844.2004 PubMedCrossRefGoogle Scholar
  30. 30.
    Freiberg C, Brötz-Oesterhelt H, Labischinski H (2004) The impact of transcriptome and proteome analyses on antibiotic drug discovery. Curr Opin Microbiol 7:451–459. doi: 10.1016/j.mib.2004.08.010 PubMedCrossRefGoogle Scholar
  31. 31.
    Davies J, Spiegelman GB, Yim G (2006) The world of subinhibitory antibiotic concentrations. Curr Opin Microbiol 9:445–453. doi: 10.1016/j.mib.2006.08.006 PubMedCrossRefGoogle Scholar
  32. 32.
    Lange RP, Locher HH, Wyss PC, Then RL (2007) The targets of currently used antibacterial agents: lessons for drug discovery. Curr Pharm Des 13:3140–3154. doi: 10.2174/138161207782110408 PubMedCrossRefGoogle Scholar
  33. 33.
    Alvarez J, Vicente M (2007) Using genomics to identify new targets and counteract resistance to antibiotics. Expert Opin Ther Pat 17:667–674CrossRefGoogle Scholar
  34. 34.
    Cooper RA, Molan PC, Harding KG (2002) The sensitivity to honey of Gram-positive cocci of clinical significance isolated from wounds. J Appl Microbiol 93:857–863. doi: 10.1046/j.1365-2672.2002.01761.x PubMedCrossRefGoogle Scholar
  35. 35.
    NCCLS (2000) Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically. NCCLS Document Approved Standard—Fifth editionGoogle Scholar
  36. 36.
    Rimsky S (2004) Structure of the histone-like protein H-NS and its role in regulation and genome superstructure. Curr Opin Microbiol 7:109–114. doi: 10.1016/j.mib.2004.02.001 PubMedCrossRefGoogle Scholar
  37. 37.
    Marles-Wright J, Lewis RJ (2007) Stress responses of bacteria. Curr Opin Struct Biol 17:755–760. doi: 10.1016/ PubMedCrossRefGoogle Scholar
  38. 38.
    Hengge-Aronis R (2002) Signal transduction and regulatory mechanisms involved in control of the σS RpoS subunit of RNA polymerase. Microbiol Mol Biol Rev 66:373–395. doi: 10.1128/MMBR.66.3.373-395.2002 PubMedCrossRefGoogle Scholar
  39. 39.
    Dong T, Kirchhof MG, Schellhorn HE (2008) RpoS regulation of gene expression during exponential growth of Escherichia coli K12. Mol Genet Genomics 279:267–277. doi: 10.1007/s00438-007-0311-4 PubMedCrossRefGoogle Scholar
  40. 40.
    Eguchi Y, Oshima T, Mori H, Aono R, Yamamoto K, Ishihama A, Utsumi R (2003) Transcriptional regulation of drug efflux genes by EvgAS, a two-component system in Escherichia coli. Microbiology 149:2819–2828. doi: 10.1099/mic.0.26460-0 PubMedCrossRefGoogle Scholar
  41. 41.
    Eguchi Y, Okada T, Minagawa S, Oshima T, Mori H, Yamamoto K, Ishihama A, Utsumi R (2004) Signal transduction cascade between EvgA/EvgS and PhoP/PhoQ two-component systems of Escherichia coli. J Bacteriol 186:3006–3014. doi: 10.1128/JB.186.10.3006-3014.2004 PubMedCrossRefGoogle Scholar
  42. 42.
    Simon A, Traynor K, Santos K, Blaser G, Bode U, Molan P (2009) Medical honey for wound care—still the ‘latest resort’? eCAM 6:165–173. doi: 10.1093/ecam/nem175
  43. 43.
    Blair SE, Carter DA (2005) The potential for honey in the management of wounds and infection. Aust Infect Contr 10:24–31Google Scholar
  44. 44.
    Cooper RA, Wigley P, Burton NF (2000) Susceptibility of multiresistant strains of Burkholderia cepacia to honey. Lett Appl Microbiol 31:20–24. doi: 10.1046/j.1472-765x.2000.00756.x PubMedCrossRefGoogle Scholar
  45. 45.
    Cooper RA, Halas E, Molan PC (2002) The efficacy of honey in inhibiting strains of Pseudomonas aeruginosa from infected burns. J Burn Care Rehabil 23:366–370. doi: 10.1097/00004630-200211000-00002 PubMedCrossRefGoogle Scholar
  46. 46.
    French VM, Cooper RA, Molan PC (2005) The antibacterial activity of honey against coagulase-negative staphylococci. J Antimicrob Chemother 56:228–231. doi: 10.1093/jac/dki193 PubMedCrossRefGoogle Scholar
  47. 47.
    Braoudaki M, Hilton AC (2004) Adaptive resistance to biocides in Salmonella enterica and Escherichia coli O157 and cross-resistance to antimicrobial agents. J Clin Microbiol 42:73–78. doi: 10.1128/JCM.42.1.73-78.2004 PubMedCrossRefGoogle Scholar
  48. 48.
    Booth IR, Ferguson GP, Miller S, Li C, Gunasekera B, Kinghorn S (2003) Bacterial production of methylglyoxal: a survival strategy or death by misadventure? Biochem Soc Trans 31:1406–1408. doi: 10.1042/BST0311406 PubMedCrossRefGoogle Scholar
  49. 49.
    Crane E (1976) Honey, a comprehensive survey. London: Heinemann (for the Bee Research Association), p 608Google Scholar
  50. 50.
    Moreillon P (2000) Means of bacterial resistance. Rev Med Suisse Romande 120:641–650PubMedGoogle Scholar
  51. 51.
    Levy SB (2002) Active efflux, a common mechanism for biocide and antibiotic resistance. J Appl Microbiol 92:65S–71S. doi: 10.1046/j.1365-2672.92.5s1.4.x PubMedCrossRefGoogle Scholar
  52. 52.
    Kaldalu N, Mei R, Lewis K (2004) Killing by ampicillin and ofloxacin induces overlapping changes in Escherichia coli transcription profile. Antimicrob Agents Chemother 48:890–896. doi: 10.1128/AAC.48.3.890-896.2004 PubMedCrossRefGoogle Scholar
  53. 53.
    Herold S, Siebert J, Huber A, Schmidt H (2005) Global expression of prophage genes in Escherichia coli O157:H7 strain EDL933 in response to norfloxacin. Antimicrob Agents Chemother 49:931–944. doi: 10.1128/AAC.49.3.931-944.2005 PubMedCrossRefGoogle Scholar
  54. 54.
    Goh EB, Yim G, Tsui W, McClure J, Surette MG, Davies J (2002) Transcriptional modulation of bacterial gene expression by subinhibitory concentrations of antibiotics. Proc Natl Acad Sci USA 99:17025–17030. doi: 10.1073/pnas.252607699 PubMedCrossRefGoogle Scholar
  55. 55.
    Hong RW, Shchepetov M, Weiser JN, Axelsen PH (2003) Transcriptional profile of the Escherichia coli response to the antimicrobial insect peptide cecropin A. Antimicrob Agents Chemother 47:1–6. doi: 10.1128/AAC.47.1.1-6.2003 PubMedCrossRefGoogle Scholar
  56. 56.
    Tomasinsig L, Scocchi M, Mettulio R, Zanetti M (2004) Genome-wide transcriptional profiling of the Escherichia coli response to a proline-rich antimicrobial peptide. Antimicrob Agents Chemother 48:3260–3267. doi: 10.1128/AAC.48.9.3260-3267.2004 PubMedCrossRefGoogle Scholar
  57. 57.
    Khil PP, Camerini-Otero RD (2002) Over 1000 genes are involved in the DNA damage response of Escherichia coli. Mol Microbiol 44:89–105. doi: 10.1046/j.1365-2958.2002.02878.x PubMedCrossRefGoogle Scholar
  58. 58.
    Chang DE, Smalley DJ, Conway T (2002) Gene expression profiling of Escherichia coli growth transitions: an expanded stringent response model. Mol Microbiol 45:289–306. doi: 10.1046/j.1365-2958.2002.03001.x PubMedCrossRefGoogle Scholar
  59. 59.
    Hengge-Aronis R (1996) Back to log phase: sigma S as a global regulator in the osmotic control of gene expression in Escherichia coli. Mol Microbiol 21:887–893. doi: 10.1046/j.1365-2958.1996.511405.x PubMedCrossRefGoogle Scholar
  60. 60.
    Ferguson GP, Creighton RI, Nikolaev Y, Booth IR (1998) Importance of RpoS and Dps in survival of exposure of both exponential- and stationary-phase Escherichia coli cells to the electrophile N-ethylmaleimide. J Bacteriol 180:1030–1036PubMedGoogle Scholar
  61. 61.
    Seputiene V, Daugelavicius A, Suziedelis K, Suziedeliene E (2006) Acid response of exponentially growing Escherichia coli K-12. Microbiol Res 161:65–74. doi: 10.1016/j.micres.2005.06.002 PubMedCrossRefGoogle Scholar
  62. 62.
    van Baarlen P, van Belkum A, Summerbell RC, Crous PW, Thomma BPHJ (2007) Molecular mechanisms of pathogenicity: how do pathogenic microorganisms develop cross-kingdom host jumps? FEMS Microbiol Rev 31:239–277. doi: 10.1111/j.1574-6976.2007.00065.x PubMedCrossRefGoogle Scholar
  63. 63.
    Irish J, Carter DA, Shokohi T, Blair SE (2006) Honey has an antifungal effect against Candida species. Med Mycol 44:289–291. doi: 10.1080/13693780500417037 PubMedCrossRefGoogle Scholar
  64. 64.
    Brady NF, Molan PC, Harfoot CG (1996) The sensitivity of dermatophytes to the antimicrobial activity of manuka honey and other honey. Pharm Sci 2:471–473Google Scholar
  65. 65.
    Ferguson GP, Tötemeyer S, MacLean MJ, Booth IR (1998) Methylglyoxal production in bacteria: suicide or survival? Arch Microbiol 170:209–219. doi: 10.1007/s002030050635 PubMedCrossRefGoogle Scholar
  66. 66.
    Tötemeyer S, Booth NA, Nichols WW, Dunbar B, Booth IR (1998) From famine to feast: the role of methylglyoxal production in Escherichia coli. Mol Microbiol 27:553–562. doi: 10.1046/j.1365-2958.1998.00700.x PubMedCrossRefGoogle Scholar
  67. 67.
    Clugston SL, Honek JF (2000) Identification of sequences encoding the detoxification metalloisomerase glyoxalase I in microbial genomes from several pathogenic organisms. J Mol Evol 50:491–495PubMedGoogle Scholar
  68. 68.
    Grant AW, Steel G, Waugh H, Ellis EM (2003) A novel aldo-keto reductase from Escherichia coli can increase resistance to methylglyoxal toxicity. FEMS Microbiol Lett 218:93–99. doi: 10.1111/j.1574-6968.2003.tb11503.x PubMedCrossRefGoogle Scholar
  69. 69.
    Misra K, Banerjee AB, Ray S, Ray M (1995) Glyoxalase III from Escherichia coli: a single novel enzyme for the conversion of methylglyoxal into D-lactate without reduced glutathione. Biochem J 305:999–1003PubMedGoogle Scholar
  70. 70.
    Ferguson GP, McLaggan D, Booth IR (1995) Potassium channel activation by glutathione-s-conjugates in Escherichia coli: protection against methylglyoxal is mediated by cytoplasmic acidification. Mol Microbiol 17:1025–1033. doi: 10.1111/j.1365-2958.1995.mmi_17061025.x PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • S. E. Blair
    • 1
    • 2
  • N. N. Cokcetin
    • 1
  • E. J. Harry
    • 2
  • D. A. Carter
    • 1
    Email author
  1. 1.School of Molecular and Microbial BiosciencesUniversity of SydneySydneyAustralia
  2. 2.Institute for the Biotechnology of Infectious DiseasesUniversity of TechnologySydneyAustralia

Personalised recommendations