Polymorphisms in Toll-like receptor 4 (TLR4) are associated with protection against leprosy

  • P.-Y. Bochud
  • D. Sinsimer
  • A. Aderem
  • M. R. Siddiqui
  • P. Saunderson
  • S. Britton
  • I. Abraham
  • A. Tadesse Argaw
  • M. Janer
  • T. R. Hawn
  • G. Kaplan


Accumulating evidence suggests that polymorphisms in Toll-like receptors (TLRs) influence the pathogenesis of mycobacterial infections, including leprosy, a disease whose manifestations depend on host immune responses. Polymorphisms in TLR2 are associated with an increased risk of reversal reaction, but not susceptibility to leprosy itself. We examined whether polymorphisms in TLR4 are associated with susceptibility to leprosy in a cohort of 441 Ethiopian leprosy patients and 197 healthy controls. We found that two single nucleotide polymorphisms (SNPs) in TLR4 (896G>A [D299G] and 1196C>T [T399I]) were associated with a protective effect against the disease. The 896GG, GA and AA genotypes were found in 91.7, 7.8 and 0.5% of leprosy cases versus 79.9, 19.1 and 1.0% of controls, respectively (odds ratio [OR] = 0.34, 95% confidence interval [CI] 0.20–0.57, P < 0.001, additive model). Similarly, the 1196CC, CT and TT genotypes were found in 98.1, 1.9 and 0% of leprosy cases versus 91.8, 7.7 and 0.5% of controls, respectively (OR = 0.16, 95% CI 0.06-–.40, P < 0.001, dominant model). We found that Mycobacterium leprae stimulation of monocytes partially inhibited their subsequent response to lipopolysaccharide (LPS) stimulation. Our data suggest that TLR4 polymorphisms are associated with susceptibility to leprosy and that this effect may be mediated at the cellular level by the modulation of TLR4 signalling by M. leprae.


  1. 1.
    [No authors listed] (2007) Global leprosy situation, 2007. Wkly Epidemiol Rec 82:225–232Google Scholar
  2. 2.
    Ridley DS, Jopling WH (1966) Classification of leprosy according to immunity. A five-group system. Int J Lepr Other Mycobact Dis 34:255–273PubMedGoogle Scholar
  3. 3.
    Scollard DM, Adams LB, Gillis TP et al (2006) The continuing challenges of leprosy. Clin Microbiol Rev 19:338–381. doi:10.1128/CMR.19.2.338-381.2006 PubMedCrossRefGoogle Scholar
  4. 4.
    Yamamura M, Uyemura K, Deans RJ et al (1991) Defining protective responses to pathogens: cytokine profiles in leprosy lesions. Science 254:277–279. doi:10.1126/science.1925582 PubMedCrossRefGoogle Scholar
  5. 5.
    Salgame P, Abrams JS, Clayberger C et al (1991) Differing lymphokine profiles of functional subsets of human CD4 and CD8 T cell clones. Science 254:279–282. doi:10.1126/science.1681588 PubMedCrossRefGoogle Scholar
  6. 6.
    Bochud PY, Bochud M, Telenti A et al (2007) Innate immunogenetics: a tool for exploring new frontiers of host defence. Lancet Infect Dis 7:531–542. doi:10.1016/S1473-3099(07)70185-8 PubMedCrossRefGoogle Scholar
  7. 7.
    Iwasaki A, Medzhitov R (2004) Toll-like receptor control of the adaptive immune responses. Nat Immunol 5:987–995. doi:10.1038/ni1112 PubMedCrossRefGoogle Scholar
  8. 8.
    Akira S, Uematsu S, Takeuchi O (2006) Pathogen recognition and innate immunity. Cell 124:783–801. doi:10.1016/j.cell.2006.02.015 PubMedCrossRefGoogle Scholar
  9. 9.
    Quesniaux V, Fremond C, Jacobs M et al (2004) Toll-like receptor pathways in the immune responses to mycobacteria. Microbes Infect 6:946–959. doi:10.1016/j.micinf.2004.04.016 PubMedCrossRefGoogle Scholar
  10. 10.
    Jo EK, Yang CS, Choi CH et al (2007) Intracellular signalling cascades regulating innate immune responses to Mycobacteria: branching out from Toll-like receptors. Cell Microbiol 9:1087–1098. doi:10.1111/j.1462-5822.2007.00914.x PubMedCrossRefGoogle Scholar
  11. 11.
    Heldwein KA, Fenton MJ (2002) The role of Toll-like receptors in immunity against mycobacterial infection. Microbes Infect 4:937–944. doi:10.1016/S1286-4579(02)01611-8 PubMedCrossRefGoogle Scholar
  12. 12.
    Krutzik SR, Ochoa MT, Sieling PA et al (2003) Activation and regulation of Toll-like receptors 2 and 1 in human leprosy. Nat Med 9:525–532. doi:10.1038/nm864 PubMedCrossRefGoogle Scholar
  13. 13.
    Means TK, Wang S, Lien E et al (1999) Human toll-like receptors mediate cellular activation by Mycobacterium tuberculosis. J Immunol 163:3920–3927PubMedGoogle Scholar
  14. 14.
    Alcaïs A, Mira M, Casanova JL et al (2005) Genetic dissection of immunity in leprosy. Curr Opin Immunol 17:44–48. doi:10.1016/j.coi.2004.11.006 PubMedCrossRefGoogle Scholar
  15. 15.
    Alcaïs A, Alter A, Antoni G et al (2007) Stepwise replication identifies a low-producing lymphotoxin-alpha allele as a major risk factor for early-onset leprosy. Nat Genet 39:517–522. doi:10.1038/ng2000 PubMedCrossRefGoogle Scholar
  16. 16.
    Santos AR, Suffys PN, Vanderborght PR et al (2002) Role of tumor necrosis factor-alpha and interleukin-10 promoter gene polymorphisms in leprosy. J Infect Dis 186:1687–1691. doi:10.1086/345366 PubMedCrossRefGoogle Scholar
  17. 17.
    Moraes MO, Pacheco AG, Schonkeren JJ et al (2004) Interleukin-10 promoter single-nucleotide polymorphisms as markers for disease susceptibility and disease severity in leprosy. Genes Immun 5:592–595. doi:10.1038/sj.gene.6364122 PubMedCrossRefGoogle Scholar
  18. 18.
    Mira MT (2006) Genetic host resistance and susceptibility to leprosy. Microbes Infect 8:1124–1131. doi:10.1016/j.micinf.2005.10.024 PubMedCrossRefGoogle Scholar
  19. 19.
    Misch EA, Hawn TR (2008) Toll-like receptor polymorphisms and susceptibility to human disease. Clin Sci (Lond) 114:347–360. doi:10.1042/CS20070214 CrossRefGoogle Scholar
  20. 20.
    Bochud PY, Hawn TR, Siddiqui MR et al (2008) Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. J Infect Dis 197:253–261. doi:10.1086/524688 PubMedCrossRefGoogle Scholar
  21. 21.
    Ferwerda B, Kibiki GS, Netea MG et al (2007) The toll-like receptor 4 Asp299Gly variant and tuberculosis susceptibility in HIV-infected patients in Tanzania. AIDS 21:1375–1377. doi:10.1097/QAD.0b013e32814e6b2d PubMedCrossRefGoogle Scholar
  22. 22.
    Bochud PY, Chien JW, Marr KA et al (2008) Toll-like receptor 4 polymorphisms and aspergillosis in stem-cell transplantation. N Engl J Med 359:1766–1777. doi:10.1056/NEJMoa0802629 PubMedCrossRefGoogle Scholar
  23. 23.
    Arbour NC, Lorenz E, Schutte BC et al (2000) TLR4 mutations are associated with endotoxin hyporesponsiveness in humans. Nat Genet 25:187–191. doi:10.1038/76048 PubMedCrossRefGoogle Scholar
  24. 24.
    Saunderson P, Gebre S, Desta K et al (2000) The ALERT MDT Field Evaluation Study (AMFES): a descriptive study of leprosy in Ethiopia. Patients, methods and baseline characteristics. Lepr Rev 71:273–284PubMedGoogle Scholar
  25. 25.
    Jopling WH (1981) A practical classification of leprosy for field workers. Lepr Rev 52:273Google Scholar
  26. 26.
    Saunderson P, Gebre S, Byass P (2000) Reversal reactions in the skin lesions of AMFES patients: incidence and risk factors. Lepr Rev 71:309–317PubMedGoogle Scholar
  27. 27.
    Gordon D, Abajian C, Green P (1998) Consed: a graphical tool for sequence finishing. Genome Res 8:195–202PubMedGoogle Scholar
  28. 28.
    Hawn TR, Dunstan SJ, Thwaites GE et al (2006) A polymorphism in Toll-interleukin 1 receptor domain containing adaptor protein is associated with susceptibility to meningeal tuberculosis. J Infect Dis 194:1127–1134. doi:10.1086/507907 PubMedCrossRefGoogle Scholar
  29. 29.
    Turvey SE, Hawn TR (2006) Towards subtlety: understanding the role of Toll-like receptor signaling in susceptibility to human infections. Clin Immunol 120:1–9. doi:10.1016/j.clim.2006.02.003 PubMedCrossRefGoogle Scholar
  30. 30.
    S.A.G.E. Statistical Analysis for Genetic Epidemiology. Case Western Reserve University. 5.0 edn, 2005Google Scholar
  31. 31.
    Lahiri R, Randhawa B, Krahenbuhl J (2005) Application of a viability-staining method for Mycobacterium leprae derived from the athymic (nu/nu) mouse foot pad. J Med Microbiol 54:235–242. doi:10.1099/jmm.0.45700-0 PubMedCrossRefGoogle Scholar
  32. 32.
    Suzuki K, Fukutomi Y, Matsuoka M et al (1993) Differential production of interleukin 1 (IL-1), IL-6, tumor necrosis factor, and IL-1 receptor antagonist by human monocytes stimulated with Mycobacterium leprae and M. bovis BCG. Int J Lepr Other Mycobact Dis 61:609–618PubMedGoogle Scholar
  33. 33.
    Murray RA, Siddiqui MR, Mendillo M et al (2007) Mycobacterium leprae inhibits dendritic cell activation and maturation. J Immunol 178:338–344PubMedGoogle Scholar
  34. 34.
    Ferwerda B, McCall MB, Alonso S et al (2007) TLR4 polymorphisms, infectious diseases, and evolutionary pressure during migration of modern humans. Proc Natl Acad Sci USA 104:16645–16650. doi:10.1073/pnas.0704828104 PubMedCrossRefGoogle Scholar
  35. 35.
    Bochud PY, Hawn TR, Aderem A (2003) Cutting edge: a Toll-like receptor 2 polymorphism that is associated with lepromatous leprosy is unable to mediate mycobacterial signaling. J Immunol 170:3451–3454PubMedGoogle Scholar
  36. 36.
    Misch EA, Macdonald M, Ranjit C et al (2008) Human TLR1 deficiency is associated with impaired mycobacterial signaling and protection from leprosy reversal reaction. PLoS Negl Trop Dis 2:e231. doi:10.1371/journal.pntd.0000231 PubMedCrossRefGoogle Scholar
  37. 37.
    Johnson CM, Lyle EA, Omueti KO et al (2007) Cutting edge: A common polymorphism impairs cell surface trafficking and functional responses of TLR1 but protects against leprosy. J Immunol 178:7520–7524PubMedGoogle Scholar
  38. 38.
    Hawn TR, Misch EA, Dunstan SJ et al (2007) A common human TLR1 polymorphism regulates the innate immune response to lipopeptides. Eur J Immunol 37:2280–2289PubMedCrossRefGoogle Scholar
  39. 39.
    Kang TJ, Chae GT (2001) Detection of Toll-like receptor 2 (TLR2) mutation in the lepromatous leprosy patients. FEMS Immunol Med Microbiol 31:53–58. doi:10.1111/j.1574-695X.2001.tb01586.x PubMedCrossRefGoogle Scholar
  40. 40.
    Malhotra D, Relhan V, Reddy BS et al (2005) TLR2 Arg677Trp polymorphism in leprosy: revisited. Hum Genet 116:413–415. doi:10.1007/s00439-004-1249-9 PubMedCrossRefGoogle Scholar
  41. 41.
    Yim JJ, Ding L, Schäffer AA et al (2004) A microsatellite polymorphism in intron 2 of human Toll-like receptor 2 gene: functional implications and racial differences. FEMS Immunol Med Microbiol 40:163–169. doi:10.1016/S0928-8244(03)00342-0 PubMedCrossRefGoogle Scholar
  42. 42.
    Ogus AC, Yoldas B, Ozdemir T et al (2004) The Arg753GLn polymorphism of the human toll-like receptor 2 gene in tuberculosis disease. Eur Respir J 23:219–223. doi:10.1183/09031936.03.00061703 PubMedCrossRefGoogle Scholar
  43. 43.
    Schröder NW, Diterich I, Zinke A et al (2005) Heterozygous Arg753Gln polymorphism of human TLR-2 impairs immune activation by Borrelia burgdorferi and protects from late stage Lyme disease. J Immunol 175:2534–2540PubMedGoogle Scholar
  44. 44.
    Hawn TR, Verbon A, Janer M et al (2005) Toll-like receptor 4 polymorphisms are associated with resistance to Legionnaires’ disease. Proc Natl Acad Sci USA 102:2487–2489. doi:10.1073/pnas.0409831102 PubMedCrossRefGoogle Scholar
  45. 45.
    Michel O, LeVan TD, Stern D et al (2003) Systemic responsiveness to lipopolysaccharide and polymorphisms in the toll-like receptor 4 gene in human beings. J Allergy Clin Immunol 112:923–929. doi:10.1016/j.jaci.2003.05.001 PubMedCrossRefGoogle Scholar
  46. 46.
    Fagerås Böttcher M, Hmani-Aifa M, Lindström A et al (2004) A TLR4 polymorphism is associated with asthma and reduced lipopolysaccharide-induced interleukin-12(p70) responses in Swedish children. J Allergy Clin Immunol 114:561–567. doi:10.1016/j.jaci.2004.04.050 PubMedCrossRefGoogle Scholar
  47. 47.
    Erridge C, Stewart J, Poxton IR (2003) Monocytes heterozygous for the Asp299Gly and Thr399Ile mutations in the Toll-like receptor 4 gene show no deficit in lipopolysaccharide signalling. J Exp Med 197:1787–1791. doi:10.1084/jem.20022078 PubMedCrossRefGoogle Scholar
  48. 48.
    von Aulock S, Schröder NW, Gueinzius K et al (2003) Heterozygous toll-like receptor 4 polymorphism does not influence lipopolysaccharide-induced cytokine release in human whole blood. J Infect Dis 188:938–943. doi:10.1086/378095 CrossRefGoogle Scholar
  49. 49.
    Paulus SC, Hirschfeld AF, Victor RE et al (2007) Common human Toll-like receptor 4 polymorphisms—role in susceptibility to respiratory syncytial virus infection and functional immunological relevance. Clin Immunol 123:252–277PubMedCrossRefGoogle Scholar
  50. 50.
    Medvedev AE, Sabroe I, Hasday JD et al (2006) Tolerance to microbial TLR ligands: molecular mechanisms and relevance to disease. J Endotoxin Res 12:133–150. doi:10.1179/096805106X102255 PubMedCrossRefGoogle Scholar
  51. 51.
    Kobayashi K, Hernandez LD, Galán JE et al (2002) IRAK-M is a negative regulator of Toll-like receptor signaling. Cell 110:191–202. doi:10.1016/S0092-8674(02)00827-9 PubMedCrossRefGoogle Scholar
  52. 52.
    Viboud GI, Bliska JB (2005) Yersinia outer proteins: role in modulation of host cell signaling responses and pathogenesis. Annu Rev Microbiol 59:69–89. doi:10.1146/annurev.micro.59.030804.121320 PubMedCrossRefGoogle Scholar
  53. 53.
    Cirl C, Wieser A, Yadav M et al (2008) Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 14:399–406. doi:10.1038/nm1734 PubMedCrossRefGoogle Scholar
  54. 54.
    Bochud PY, Hawn TR, Siddiqui MR et al (2008) Toll-like receptor 2 (TLR2) polymorphisms are associated with reversal reaction in leprosy. J Infect Dis 197:253–261. doi:10.1086/524688 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2009

Authors and Affiliations

  • P.-Y. Bochud
    • 1
    • 7
  • D. Sinsimer
    • 3
    • 6
  • A. Aderem
    • 1
    • 2
  • M. R. Siddiqui
    • 3
    • 8
  • P. Saunderson
    • 4
    • 9
  • S. Britton
    • 5
    • 10
  • I. Abraham
    • 5
  • A. Tadesse Argaw
    • 5
    • 11
  • M. Janer
    • 1
  • T. R. Hawn
    • 1
    • 2
  • G. Kaplan
    • 3
  1. 1.Institute for Systems BiologySeattleUSA
  2. 2.Department of MedicineUniversity of WashingtonSeattleUSA
  3. 3.Laboratory of Mycobacterial Immunity and Pathogenesis, Public Health Research Institute Center at the University of Medicine and Dentistry of New JerseyNewarkUSA
  4. 4.All Africa Leprosy Rehabilitation and TrainingAddis AbabaEthiopia
  5. 5.Armauer Hansen Research InstituteAddis AbabaEthiopia
  6. 6.Graduate School of Biomedical SciencesUniversity of Medicine and Dentistry of New JerseyNewarkUSA
  7. 7.Service of Infectious Diseases, Department of Medicine, Institute of MicrobiologyUniversity Hospital and University of LausanneLausanneSwitzerland
  8. 8.Centre for Infections, Health Protection AgencyLondonUK
  9. 9.American Leprosy MissionsGreenvilleUSA
  10. 10.Department of MedicineKarolinska InstituteStockholmSweden
  11. 11.Mount Sinai School of MedicineNew YorkUSA

Personalised recommendations