Variable number tandem repeat loci providing discrimination within widespread genotypes of Acinetobacter baumannii

  • J. F. Turton
  • J. Matos
  • M. E. Kaufmann
  • T. L. Pitt
Article

Abstract

Some genotypes of Acinetobacter baumannii, defined by pulsed-field gel electrophoresis (PFGE), have been found in many hospitals. Our aim was to find variable number tandem repeat (VNTR) loci capable of providing discrimination among isolates with highly similar or identical PFGE profiles, to gain insights into the epidemiology. Thirteen loci identified in A. baumannii ATCC 17978 were tested using a panel of isolates that included multiple representatives of genotypes belonging to the three European clonal lineages. Two loci, with repeat units of 9 and 6 bp respectively were selected. Repeat numbers varied between 3 and 29, and 9 and 26 respectively at the two loci. The repeat numbers of representatives of each genotype often differed between hospitals, providing a means of tracking patient transfers and possible transmissions between patients. The results suggest that this analysis accurately reflects the known epidemiological information, and provides a valuable tool for cross-infection studies.

References

  1. 1.
    Dijkshoorn L, Nemec A, Seifert H (2007) An increasing threat in hospitals: multidrug-resistant Acinetobacter baumannii. Nat Rev Microbiol 5:939–951. doi:10.1038/nrmicro1789 PubMedCrossRefGoogle Scholar
  2. 2.
    Wareham DW, Bean DC, Khanna P et al (2008) Bloodstream infection due to Acinetobacter spp: epidemiology, risk factors and impact of multi-drug resistance. Eur J Clin Microbiol Infect Dis 27:607–612. doi:10.1007/s10096–008–0473-y PubMedCrossRefGoogle Scholar
  3. 3.
    Coelho JM, Turton JF, Kaufmann ME et al (2006) Occurrence of carbapenem-resistant Acinetobacter baumannii clones at multiple hospitals in London and Southeast England. J Clin Microbiol 44:3623–3627. doi:10.1128/JCM.00699–06 PubMedCrossRefGoogle Scholar
  4. 4.
    Turton JF, Kaufmann ME, Warner M et al (2004) A prevalent, multiresistant clone of Acinetobacter baumannii in Southeast England. J Hosp Infect 58:170–179. doi:10.1016/j.jhin.2004.05.011 PubMedCrossRefGoogle Scholar
  5. 5.
    Turton JF, Gabriel SN, Valderrey C, Kaufmann ME, Pitt TL (2007) Use of sequence-based typing and multiplex PCR to identify clonal lineages of outbreak strains of Acinetobacter baumannii. Clin Microbiol Infect 13:807–815. doi:10.1111/j.1469–0691.2007.01759.x PubMedCrossRefGoogle Scholar
  6. 6.
    Turton JF, Woodford N, Glover J, Yarde S, Kaufmann ME, Pitt TL (2006) Identification of Acinetobacter baumannii by detection of the bla OXA-51-like carbapenemase gene intrinsic to this species. J Clin Microbiol 44:2974–2976. doi:10.1128/JCM.01021–06 PubMedCrossRefGoogle Scholar
  7. 7.
    Naas T, Coignard B, Carbonne A, French Nosocomial Infection Early Warning Investigation and Surveillance Network et al (2006) VEB-1 extended-spectrum beta-lactamase-producing Acinetobacter baumannii, France. Emerg Infect Dis 12:1214–1222PubMedGoogle Scholar
  8. 8.
    Da Silva G, Dijkshoorn L, van der Reijden T, van Strijen B, Duarte A (2007) Identification of widespread, closely related Acinetobacter baumannii isolates in Portugal as a subgroup of European clone II. Clin Microbiol Infect 13:190–195. doi:10.1111/j.1469–0691.2006.01628.x PubMedGoogle Scholar
  9. 9.
    Lolans K, Rice TW, Munoz-Price LS, Quinn JP (2006) Multicity outbreak of carbapenem-resistant Acinetobacter baumannii isolates producing the carbapenemase OXA-40. Antimicrob Agents Chemother 50:2941–2945. doi:10.1128/AAC.00116–06 PubMedCrossRefGoogle Scholar
  10. 10.
    Zhou H, Yang Q, Yu YS, Wei ZQ, Li LJ (2007) Clonal spread of imipenem-resistant Acinetobacter baumannii among different cities of China. J Clin Microbiol 45:4054–4057. doi:10.1128/JCM.00343–07 PubMedCrossRefGoogle Scholar
  11. 11.
    Whatmore AM, Shankster SJ, Perrett LL et al (2006) Identification and characterization of variable-number tandem-repeat markers for typing of Brucella spp. J Clin Microbiol 44:1982–1993. doi:10.1128/JCM.02039–05 PubMedCrossRefGoogle Scholar
  12. 12.
    Pourcel C, Visca P, Ashfar B, D’Arezzo S, Vergnaud G, Fry NK (2007) Identification of variable-number tandem-repeat (VNTR) sequences in Legionella pneumophila and development of an optimized multiple-locus VNTR analysis typing scheme. J Clin Microbiol 45:1190–1199. doi:10.1128/JCM.02078–06 PubMedCrossRefGoogle Scholar
  13. 13.
    Vu-Thien H, Corbineau G, Hormigos K et al (2007) Multiple-locus variable-number tandem-repeat analysis for longitudinal survey of sources of Pseudomonas aeruginosa infection in cystic fibrosis patients. J Clin Microbiol 45:3175–3183. doi:10.1128/JCM.00702–07 PubMedCrossRefGoogle Scholar
  14. 14.
    Alonso-Rodríguez N, Martínez-Lirola M, Herránz M et al (2008) Evaluation of the new advanced 15-loci MIRU-VNTR genotyping tool in Mycobacterium tuberculosis molecular epidemiology studies. BMC Microbiol 8:34. doi:10.1186/1471–2180–8–34 PubMedCrossRefGoogle Scholar
  15. 15.
    Van Belkum A (1999) The role of short sequence repeats in epidemiologic typing. Curr Opin Microbiol 2:306–311. doi:10.1016/S1369–5274(99)80053–8 PubMedCrossRefGoogle Scholar
  16. 16.
    Mathema B, Mediavilla J, Kreiswirth BN (2007) Sequence analysis of the variable number tandem repeat in Staphylococcus aureus protein A gene: spa typing. Methods Mol Biol 431:285–306. doi:10.1007/978–1–60327–032–8_22 CrossRefGoogle Scholar
  17. 17.
    Strommenger B, Braulke C, Heuck D et al (2008) spa Typing of Staphylococcus aureus as a frontline tool in epidemiological typing. J Clin Microbiol 46:574–581. doi:10.1128/JCM.01599–07 PubMedCrossRefGoogle Scholar
  18. 18.
    Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27:573–580. doi:10.1093/nar/27.2.573 PubMedCrossRefGoogle Scholar
  19. 19.
    Woodford N, Ellington MJ, Coelho JM et al (2006) Multiplex PCR for genes encoding prevalent OXA carbapenemases in Acinetobacter spp. Int J Antimicrob Agents 27:351–353. doi:10.1016/j.ijantimicag.2006.01.004 PubMedCrossRefGoogle Scholar
  20. 20.
    Vaneechoutte M, Dijkshoorn L, Tjernberg I et al (1995) Identification of Acinetobacter genomic species by amplified ribosomal DNA restriction analysis. J Clin Microbiol 33:11–15PubMedGoogle Scholar
  21. 21.
    Kremer K, Arnold C, Cataldi A et al (2005) Discriminatory power and reproducibility of novel DNA typing methods for Mycobacterium tuberculosis complex strains. J Clin Microbiol 43:5628–5638. doi:10.1128/JCM.43.11.5628–5638.2005 PubMedCrossRefGoogle Scholar
  22. 22.
    Zhang L, Budiawan T, Matsuoka M (2005) Diversity of potential short tandem repeats in Mycobacterium leprae and application for molecular typing. J Clin Microbiol 43:5221–5229. doi:10.1128/JCM.43.10.5221–5229.2005 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • J. F. Turton
    • 1
  • J. Matos
    • 1
  • M. E. Kaufmann
    • 1
  • T. L. Pitt
    • 1
  1. 1.Laboratory of HealthCare Associated Infection, Centre for InfectionsHealth Protection AgencyLondonUnited Kingdom

Personalised recommendations