Advertisement

Methicillin-resistant Staphylococcus aureus (MRSA) in hospitalized children: correlation of molecular analysis with clinical presentation and antibiotic susceptibility testing (ABST) results

  • N. Abdel-Haq
  • H. Al-Tatari
  • P. Chearskul
  • H. Salimnia
  • B. I. Asmar
  • M. R. Fairfax
  • M. Amjad
Brief Report

Abstract

The molecular analysis of methicillin-resistant Staphylococcus aureus (MRSA) from 98 children admitted to the Children’s Hospital of Michigan, Detroit, MI, with serious MRSA infections during 2006–2007 was correlated with risk factors, clinical features, and antibiotic susceptibility testing (ABST) results. Isolates were characterized by staphylococcal cassette chromosome (SCC) mec type, the presence of Panton-Valentine leukocidin (PVL) genes, repetitive sequence (rep) polymerase chain reaction (PCR) and pulsed-field gel electrophoresis (PFGE), requirement for surgical intervention, antibiograms, and response to therapy. rep-PCR was more rapid than PFGE typing and correlated well. SCCmec type IV-containing isolates caused 92.8% of all infections, but the demographics and diseases associated with subtypes IVa and IVd differed. Subtype IVa (all PFGE type USA300 and PVL-positive) was identified in 81/93 (87.1%) of patients with community-onset (CO) MRSA, including 21/35 of those with risk factors for health care-associated (HA) infection. All other clones were PVL-negative. Subtype IVd (10 isolates; 9 USA800 and 1 eMRSA15) caused mainly HA-MRSA and no skin and soft tissue infections (SSTI). Seven classic HA-MRSA strains (SCCmec types II [6; 3 USA100 and 3 USA600] and III [1; USA200]) caused HA and hospital-onset (HO) infections. Surgical intervention was required in 68/81 patients infected with USA300 and 8/17 of the others. Most USA300 were susceptible (S) to clindamycin (CD) and patients were treated with CD alone or in combination. The other isolates were generally treated with vancomycin (VA) alone or in combination.

Keywords

Linezolid Daptomycin Mupirocin Chronic Suppurative Otitis Medium SCCmec Type 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgment

We thank the Detroit Medical Center University laboratory personnel and the personnel at DiversiLab for their technical help. We also thank the personnel at the Staphylococcus aureus typing laboratory at the Centers for Disease Control and Prevention, Atlanta, GA, for performing the pulsed-field gel electrophoresis.

The study was supported by a grant from Cubist Pharmaceuticals.

References

  1. 1.
    Ross TL, Merz WG, Farkosh M, Carroll KC (2005) Comparison of an automated repetitive sequence-based PCR microbial typing system to pulsed-field gel electrophoresis for analysis of outbreaks of methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43(11):5642–5647. doi: 10.1128/JCM.43.11.5642-5647.2005 PubMedCrossRefGoogle Scholar
  2. 2.
    Robinson DA, Enright MC (2003) Evolutionary models of the emergence of methicillin-resistant Staphylococcus aureus. Antimicrob Agents Chemother 47(12):3926–3934. doi: 10.1128/AAC.47.12.3926-3934.2003 PubMedCrossRefGoogle Scholar
  3. 3.
    McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41(11):5113–5120. doi: 10.1128/JCM.41.11.5113-5120.2003 PubMedCrossRefGoogle Scholar
  4. 4.
    Herold BC, Immergluck LC, Maranan MC, Lauderdale DS, Gaskin RE, Boyle-Vavra S, Leitch CD, Daum RS (1998) Community-acquired methicillin-resistant Staphylococcus aureus in children with no identified predisposing risk. JAMA 279(8):593–598. doi: 10.1001/jama.279.8.593 PubMedCrossRefGoogle Scholar
  5. 5.
    Wang JT, Chen YC, Yang TL, Chang SC (2002) Molecular epidemiology and antimicrobial susceptibility of methicillin-resistant Staphylococcus aureus in Taiwan. Diagn Microbiol Infect Dis 42(3):199–203. doi: 10.1016/S0732-8893(01)00351-0 PubMedCrossRefGoogle Scholar
  6. 6.
    Gonzalez BE, Rueda AM, Shelburne SA 3rd, Musher DM, Hamill RJ, Hulten KG (2006) Community-associated strains of methicillin-resistant Staphylococcus aureus as the cause of healthcare-associated infection. Infect Control Hosp Epidemiol 27(10):1051–1056. doi: 10.1086/507923 PubMedCrossRefGoogle Scholar
  7. 7.
    Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J (1999) Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29(5):1128–1132. doi: 10.1086/313461 PubMedCrossRefGoogle Scholar
  8. 8.
    Clinical and Laboratory Standards Institute (CLSI) (2008) Performance standards for antimicrobial susceptibility testing: eighteenth informational supplement. M100-S18. CLSI, Wayne, PA, pp 46–51Google Scholar
  9. 9.
    Gadepalli R, Dhawan B, Mohanty S, Kapil A, Das BK, Chaudhry R, Samantaray JC (2007) Mupirocin resistance in Staphylococcus aureus in an Indian hospital. Diagn Microbiol Infect Dis 58(1):125–127. doi: 10.1016/j.diagmicrobio.2006.10.012 PubMedCrossRefGoogle Scholar
  10. 10.
    Salgado CD, Farr BM, Calfee DP (2003) Community-acquired methicillin-resistant Staphylococcus aureus: a meta-analysis of prevalence and risk factors. Clin Infect Dis 36(2):131–139. doi: 10.1086/345436 PubMedCrossRefGoogle Scholar
  11. 11.
    Naimi TS, LeDell KH, Como-Sabetti K, Borchardt SM, Boxrud DJ, Etienne J, Johnson SK, Vandenesch F, Fridkin S, O’Boyle C, Danila RN, Lynfield R (2003) Comparison of community- and health care-associated methicillin-resistant Staphylococcus aureus infection. JAMA 290(22):2976–2984. doi: 10.1001/jama.290.22.2976 PubMedCrossRefGoogle Scholar
  12. 12.
    Zhang K, McClure JA, Elsayed S, Louie T, Conly JM (2005) Novel multiplex PCR assay for characterization and concomitant subtyping of staphylococcal cassette chromosome mec types I to V in methicillin-resistant Staphylococcus aureus. J Clin Microbiol 43(10):5026–5033. doi: 10.1128/JCM.43.10.5026-5033.2005 PubMedCrossRefGoogle Scholar
  13. 13.
    Blanc DS, Struelens MJ, Deplano A, De Ryck R, Hauser PM, Petignat C, Francioli P (2001) Epidemiological validation of pulsed-field gel electrophoresis patterns for methicillin-resistant Staphylococcus aureus. J Clin Microbiol 39(10):3442–3445. doi: 10.1128/JCM.39.10.3442-3445.2001 PubMedCrossRefGoogle Scholar
  14. 14.
    Olive DM, Bean P (1999) Principles and applications of methods for DNA-based typing of microbial organisms. J Clin Microbiol 37(6):1661–1669PubMedGoogle Scholar
  15. 15.
    Dohin B, Gillet Y, Kohler R, Lina G, Vandenesch F, Vanhems P, Floret D, Etienne J (2007) Pediatric bone and joint infections caused by Panton-Valentine leukocidin-positive Staphylococcus aureus. Pediatr Infect Dis J 26(11):1042–1048PubMedCrossRefGoogle Scholar
  16. 16.
    Stevens DL, Ma Y, Salmi DB, McIndoo E, Wallace RJ, Bryant AE (2007) Impact of antibiotics on expression of virulence-associated exotoxin genes in methicillin-sensitive and methicillin-resistant Staphylococcus aureus. J Infect Dis 195(2):202–211. doi: 10.1086/510396 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • N. Abdel-Haq
    • 1
    • 2
  • H. Al-Tatari
    • 1
    • 2
  • P. Chearskul
    • 1
    • 2
  • H. Salimnia
    • 3
    • 4
  • B. I. Asmar
    • 1
    • 2
  • M. R. Fairfax
    • 3
    • 4
  • M. Amjad
    • 5
  1. 1.Division of Infectious DiseasesChildren’s Hospital of MichiganDetroitUSA
  2. 2.Carman and Ann Adams Department of PediatricsWayne State UniversityDetroitUSA
  3. 3.Department of PathologyWayne State UniversityDetroitUSA
  4. 4.Detroit Medical Center University LaboratoriesDetroitUSA
  5. 5.Clinical Laboratory Science Program, College of Pharmacy and Health ScienceWayne State UniversityDetroitUSA

Personalised recommendations