Advertisement

Detection of Pseudomonas aeruginosa producing metallo-β-lactamase VIM-2 in a central hospital from Portugal

  • A. Pena
  • A. M. Donato
  • A. F. Alves
  • R. Leitão
  • O. M. CardosoEmail author
Brief Report

Pseudomonas aeruginosa remains one of the most important pathogens in the nosocomial setting [1]. P. aeruginosa exhibits intrinsic resistance to several antimicrobial agents. The antipseudomonal β-lactams represent a major weapon against Pseudomonas infections, either for monotherapy or for combination therapy, for which β-lactams almost invariably represent one of the components. Therefore, resistance to these agents constitutes a major challenge for anti-Pseudomonas chemotherapy. Several mechanisms can contribute to β-lactam resistance in P. aeruginosa, including β-lactamase production, outer membrane impermeability and active efflux mediated by RND-type efflux systems [1]. During the last decade, the metallo-β-lactamases (MBLs) have emerged as new threatening mechanisms of broad-spectrum β-lactam resistance in P. aeruginosa. In fact, these enzymes can efficiently degrade virtually all antipseudomonal β-lactams (except aztreonam), while they are not susceptible to therapeutic...

Keywords

Minimal Inhibitory Concentration Aztreonam Sentry Antimicrobial Surveillance Programme MicroScan WalkAway Combine Disk 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

We thank FCT through POCTI (FEDER) for financial support.

The authors thank Trindade Marques and Jorge Marques for their assistance with the data management.

References

  1. 1.
    Rossolini G, Mantengoli E (2005) Treatment and control of severe infections caused by multiresistant Pseudomonas aeruginosa. Clin Microbiol Infect 11(Suppl 4):17–32 doi: 10.1111/j.1469-0691.2005.01161.x PubMedCrossRefGoogle Scholar
  2. 2.
    Walsh TR, Toleman MA, Poirel L, Nordmann P (2005) Metallo-β-lactamases: the quiet before the storm? Clin Microbiol Rev 18:306–325 doi: 10.1128/CMR.18.2.306-325.2005 PubMedCrossRefGoogle Scholar
  3. 3.
    Clinical and Laboratory Standards Institute (CLSI) (2005) Performance standards for antimicrobial susceptibility testing: 15th informational supplement, vol. 25. CLSI, Wayne, PAGoogle Scholar
  4. 4.
    Yong D, Lee K, Yum JH, Shin HB, Rossolini GM, Chong Y (2002) Imipenem-EDTA disk method for differentiation of metallo-β-lactamase-producing clinical isolates of Pseudomonas spp. and Acinetobacter spp. J Clin Microbiol 40:3798–3801 doi: 10.1128/JCM.40.10.3798-3801.2002 PubMedCrossRefGoogle Scholar
  5. 5.
    Cardoso O, Alves AF, Leitão R (2008) Metallo-β-lactamase VIM-2 in Pseudomonas aeruginosa isolates from a cystic fibrosis patient. Int J Antimicrob Agents 31:375–379 doi: 10.1016/j.ijantimicag.2007.12.006 PubMedCrossRefGoogle Scholar
  6. 6.
    Toleman MA, Biedenbach D, Bennett DMC, Jones RN, Walsh TR (2005) Italian metallo-β-lactamases: a national problem? Report from the SENTRY Antimicrobial Surveillance Programme. J Antimicrob Chemother 55:61–70 doi: 10.1093/jac/dkh512 PubMedCrossRefGoogle Scholar
  7. 7.
    Luzzaro F, Endimiani A, Docquier J-D, Mugnaioli C, Bonsignori M, Amicosante G, Rossolini GM, Toniolo A (2004) Prevalence and characterization of metallo-β-lactamases in clinical isolates of Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 48:131–135 doi: 10.1016/j.diagmicrobio.2003.09.005 PubMedCrossRefGoogle Scholar
  8. 8.
    Lagatolla C, Tonin EA, Monti-Bragadin C, Dolzani L, Gombac F, Bearzi C, Edalucci E, Gionechetti F, Rossolini GM (2004) Endemic carbapenem-resistant Pseudomonas aeruginosa with acquired metallo-β-lactamase determinants in European hospital. Emerg Infect Dis 10:535–538PubMedGoogle Scholar
  9. 9.
    Pournaras S, Maniati M, Petinaki E, Tzouvelekis LS, Tsakris A, Legakis NJ, Maniatis AN (2003) Hospital outbreak of multiple clones of Pseudomonas aeruginosa carrying the unrelated metallo-β-lactamase gene variants bla VIM-2 and bla VIM-4. J Antimicrob Chemother 51:1409–1414 doi: 10.1093/jac/dkg239 PubMedCrossRefGoogle Scholar
  10. 10.
    Lagatolla C, Edalucci E, Dolzani L, Riccio ML, De Luca F, Medessi E, Rossolini GM, Tonin EA (2006) Molecular evolution of metallo-β-lactamase-producing Pseudomonas aeruginosa in a nosocomial setting of high-level endemicity. J Clin Microbiol 44:2348–2353 doi: 10.1128/JCM.00258-06 PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  • A. Pena
    • 1
  • A. M. Donato
    • 2
  • A. F. Alves
    • 3
  • R. Leitão
    • 1
  • O. M. Cardoso
    • 1
    Email author
  1. 1.Laboratory of Microbiology, Centro de Estudos Farmacêuticos, Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  2. 2.Laboratory of Clinical Analysis of the Faculty of PharmacyUniversity of CoimbraCoimbraPortugal
  3. 3.Laboratory of Microbiology, Centro Hospitalar de CoimbraCoimbraPortugal

Personalised recommendations