Obesity pandemics and the modification of digestive bacterial flora

Editorial

Abstract

Environmental factors, such as social networks, have an influence on obesity pandemics. The gut microbial flora (microbiota) plays a role in converting nutrients into calories. Variations in microbiota composition are found in obese humans and mice. The microbiota from an obese mouse confers an obese phenotype when transferred to an axenic mouse. There is a large body of experimental evidence and empirical data in the food industry showing that both antibiotics and probiotics, which modify the gut microbiota, can act as growth promoters, increasing the size and weight of animals. The current obesity pandemic may be caused, in part, by antibiotic treatments or colonization by probiotic bacteria. Using metagenomics and microarray analysis, studies of microbiota modifications after antibiotic and probiotic intake may identify the modifications associated with increased size and weight. Epidemiological studies recording these factors in an obese population may be able to link obesity with the absorption of microbiota modifiers.

References

  1. 1.
    Hill JO, Wyatt HR, Reed GW, Peters JC (2003) Obesity and the environment: where do we go from here? Science 299:853–855PubMedCrossRefGoogle Scholar
  2. 2.
    Hill JO, Peters JC (1998) Environmental contributions to the obesity epidemic. Science 280:1371–1374PubMedCrossRefGoogle Scholar
  3. 3.
    Christakis NA, Fowler JH (2007) The spread of obesity in a large social network over 32 years. N Engl J Med 357:370–379PubMedCrossRefGoogle Scholar
  4. 4.
    Falagas ME, Kompoti M (2006) Obesity and infection. Lancet Infect Dis 6:438–446PubMedCrossRefGoogle Scholar
  5. 5.
    Hill JO (2006) Understanding and addressing the epidemic of obesity: an energy balance perspective. Endocr Rev 27:750–761PubMedGoogle Scholar
  6. 6.
    Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ (2002) The microbiology of butyrate formation in the human colon. FEMS Microbiol Lett 217:133–139PubMedCrossRefGoogle Scholar
  7. 7.
    Rychlik JL, May T (2000) The effect of a methanogen, Methanobrevibacter smithii, on the growth rate, organic acid production, and specific ATP activity of three predominant ruminal cellulolytic bacteria. Curr Microbiol 40:176–180PubMedCrossRefGoogle Scholar
  8. 8.
    Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312:1355–1359PubMedCrossRefGoogle Scholar
  9. 9.
    Dethlefsen L, Eckburg PB, Bik EM, Relman DA (2006) Assembly of the human intestinal microbiota. Trends Ecol Evol 21:517–523PubMedCrossRefGoogle Scholar
  10. 10.
    Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308:1635–1638PubMedCrossRefGoogle Scholar
  11. 11.
    Palmer C, Bik EM, Digiulio DB, Relman DA, Brown PO (2007) Development of the human infant intestinal microbiota. PLoS Biol 5:e177PubMedCrossRefGoogle Scholar
  12. 12.
    Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci USA 101:15718–15723PubMedCrossRefGoogle Scholar
  13. 13.
    Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444:1027–1131PubMedCrossRefGoogle Scholar
  14. 14.
    Samuel BS, Gordon JI (2006) A humanized gnotobiotic mouse model of host-archaeal-bacterial mutualism. Proc Natl Acad Sci USA 103:10011–10016PubMedCrossRefGoogle Scholar
  15. 15.
    Ley RE, Bäckhed F, Turnbaugh P, Lozupone CA, Knight RD, Gordon JI (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci USA 102:11070–11075PubMedCrossRefGoogle Scholar
  16. 16.
    Ley RE, Turnbaugh PJ, Klein S, Gordon JI (2006) Microbial ecology: human gut microbes associated with obesity. Nature 444:1022–1023PubMedCrossRefGoogle Scholar
  17. 17.
    Fuller R (1989) Probiotics in man and animals. J Appl Bacteriol 66:365–378PubMedGoogle Scholar
  18. 18.
    Khan M, Raoult D, Richet H, Lepidi H, La Scola B (2007) Growth-promoting effects of single-dose intragastrically administered probiotics in chickens. Br Poult Sci 48:732–735PubMedCrossRefGoogle Scholar
  19. 19.
    Nicholson JK, Holmes E, Wilson ID (2005) Gut microorganisms, mammalian metabolism and personalized health care. Nat Rev Microbiol 3:431–438PubMedCrossRefGoogle Scholar
  20. 20.
    Reid G, Kim SO, Köhler GA (2006) Selecting, testing and understanding probiotic microorganisms. FEMS Immunol Med Microbiol 46:149–157PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2008

Authors and Affiliations

  1. 1.Faculté de MédecineUnité des Rickettsies, CNRS UMR IRD 6236, IFR48MarseilleFrance

Personalised recommendations