Antimicrobial therapy for Stenotrophomonas maltophilia infections

  • A. C. NicodemoEmail author
  • J. I. Garcia Paez


Stenotrophomonas maltophilia has emerged as an important nosocomial pathogen capable of causing respiratory, bloodstream, and urinary infections. The treatment of nosocomial infections by S. maltophilia is difficult, as this pathogen shows high levels of intrinsic or acquired resistance to different antimicrobial agents, drastically reducing the antibiotic options available for treatment. Intrinsic resistance may be due to reduced outer membrane permeability or to the multidrug efflux pumps. However, specific mechanisms of resistance such as aminoglycoside-modifying enzymes or the heterogeneous production of metallo-β-lactamase have contributed to the multidrug-resistant phenotype displayed by this pathogen. Moreover, the lack of standardized susceptibility tests and their interpretative criteria hinder the choice of an adequate antibiotic treatment. Recommendations for the treatment of infections by S. maltophilia are based on in vitro studies, certain nonrandomized clinical trials, and anecdotal experience. Trimethoprim-sulfamethoxazole remains the drug of choice, although in vitro studies indicate that ticarcillin-clavulanic acid, minocycline, some of the new fluoroquinolones, and tigecycline may be useful agents. This review describes the main resistance mechanisms, the in vitro susceptibility profile, and treatment options for S. maltophilia infections.


Levofloxacin Minocycline Moxifloxacin Colistin Polymyxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Hugh R, Gilardi GL (1980) Pseudomonas. In: Lennette EH, Balows A, Hausler WJ, Truant JP (eds) Manual of clinical microbiology, 3rd edn. American Society for Microbiology, Washington DC, pp 288–317Google Scholar
  2. 2.
    Hugh R, Ryschenkow E (1961) Pseudomonas maltophilia, an Alcaligenes-like species. J Gen Microbiol 26:123–132PubMedGoogle Scholar
  3. 3.
    Swings J, De Vos P, Van den Mooter M, De Ley J (1983) Transfer of Pseudomonas maltophilia Hugh 1981 to the genus Xanthomonas as Xanthomonas maltophilia (Hugh 1981) comb. nov. Int J Syst Bacteriol 33:409–413Google Scholar
  4. 4.
    Palleroni NJ, Bradbury JF (1983) Stenotrophomonas, a new bacterial genus for Xanthomonas maltophilia (Hugh 1980) Swings et al (1983). Int J Syst Bacteriol 43:606–609CrossRefGoogle Scholar
  5. 5.
    Gilardi GL (1969) Pseudomonas maltophilia infections in man. Am J Clin Pathol 51:58–61PubMedGoogle Scholar
  6. 6.
    Denton M, Kerr KG (1998) Microbiological and clinical aspects of infection associated with Stenotrophomonas maltophilia. Clin Microbiol Rev 11:57–80PubMedGoogle Scholar
  7. 7.
    Bottone EJ, Reitano M, Janda JM, Troy K, Cuttner J (1986) Pseudomonas maltophilia exoenzyme activity as correlate in pathogenesis of ecthyma gangrenosum. J Clin Microbiol 24:995–997PubMedGoogle Scholar
  8. 8.
    Jucker BA, Harms H, Zehnder AJ (1996) Adhesion of the positively charged bacterium Stenotrophomonas (Xanthomonas) maltophilia 70401 to glass and teflon. J Bacteriol 178:5472–5479PubMedGoogle Scholar
  9. 9.
    de Oliveira-Garcia D, Dall’Agnol M, Rosales M, Azzuz AC, Alcantara N, Martinez MB, Giron JA (2003) Fimbriae and adherence of Stenotrophomonas maltophilia to epithelial cells and to abiotic surfaces. Cell Microbiol 5:625–636PubMedCrossRefGoogle Scholar
  10. 10.
    Di Bonaventura G, Spedicato I, D’Antonio D, Robuffo I, Piccolomini R (2004) Biofilm formation by Stenotrophomonas maltophilia: modulation by quinolones, trimethoprim-sulfamethoxazole, and ceftazidime. Antimicrob Agents Chemother 48:151–160PubMedCrossRefGoogle Scholar
  11. 11.
    Morrison AJ Jr, Hoffmann KK, Wenzel RP (1986) Associated mortality and clinical characteristics of nosocomial Pseudomonas maltophilia in a university hospital. J Clin Microbiol 24:52–55PubMedGoogle Scholar
  12. 12.
    del Toro MD, Rodriguez-Bano J, Herrero M, Rivero A, Garcia-Ordonez MA, Corzo J, Peres-Cano R, Grupo Andaluz para El Estudio de las Enfermedades Infecciosas (2002) Clinical epidemiology of Stenotrophomonas maltophilia colonization and infection: a multicenter study. Medicine (Baltimore) 81:228–239CrossRefGoogle Scholar
  13. 13.
    Senol E, DesJardin J, Stark PC, Barefort L, Snydman DR (2002) Attributable mortality of Stenotrophomonas maltophilia bacteremia. Clin Infect Dis 34:1653–1656PubMedCrossRefGoogle Scholar
  14. 14.
    Murder RR, Harris AP, Muller, Edmond M, Chow JW, Papadakis K, Wagner MW, Bodey GP, Steckelberg JM (1996) Bacteremia due to Stenotrophomonas (Xanthomonas) maltophilia: a prospective, multicenter study of 91 episodes. Clin Infect Dis 22:508–512Google Scholar
  15. 15.
    Carmeli Y, Samore MH (1997) Comparison of treatment with imipenem vs ceftazidime as a predisposing factor for nosocomial acquisition of Stenotrophomonas maltophilia: a historical cohort study. Clin Infect Dis 24:1131–1134PubMedGoogle Scholar
  16. 16.
    Talmaciu I, Varlota L, Mortensen J, Schidlow DV (2000) Risk factors for emergence of Stenotrophomonas maltophilia in cystic fibrosis. Pediatr Pulmonol 30:10–15PubMedCrossRefGoogle Scholar
  17. 17.
    Hanes SD, Demirkan K, Tolley E, Boucher BA, Croce MA, Wood GC, Fabian TC (2002) Risk factors for late-onset nosocomial pneumonia caused by Stenotrophomonas maltophilia in critically ill trauma patients. Clin Infect Dis 35:228–235PubMedCrossRefGoogle Scholar
  18. 18.
    Elting LS, Khardori N, Bodey GP, Fainstein V (1990) Nosocomial infection caused by Xanthomonas maltophilia: a case-control study of predisposing factors. Infect Control Hosp Epidemiol 11:134–138PubMedGoogle Scholar
  19. 19.
    Micozzi A, Venditti M, Monaco M, Friedrich A, Taglietti F, Santilli S, Martino P (2000) Bacteremia due to Stenotrophomonas maltophilia in patients with hematologic malignancies. Clin Infect Dis 31:705–711PubMedCrossRefGoogle Scholar
  20. 20.
    Villarino ME, Stevens LE, Schable B, Mayers G, Miller JM, Burke JP, Jarvis WR (1992) Risk factors for epidemic Xanthomonas maltophilia infection/colonization in intensive care unit patients. Infect Control Hosp Epidemiol 13:201–206PubMedCrossRefGoogle Scholar
  21. 21.
    Apisarnthanarak A, Mayfield JL, Garison T, McLendon PM, Di Persio JF, Frasere VJ, Polish LB (2003) Risk factors for Stenotrophomonas maltophilia bacteremia in oncology patients: a case-control study. Infect Control Hosp Epidemiol 24:269–274PubMedCrossRefGoogle Scholar
  22. 22.
    Victor MA, Arpi M, Bruun B, Jonsson V, Hansen MM (1994) Xanthomonas maltophilia bacteremia in immunocompromised hematological patients. Scand J Infect Dis 26:163–170PubMedGoogle Scholar
  23. 23.
    Senol E (2004) Stenotrophomonas malthophilia: the significance and role as a nosocomial pathogen. J Hosp Infect 57:1–7PubMedCrossRefGoogle Scholar
  24. 24.
    Friedman ND, Korman TM, Franklin JC, Spelman DW (2002) Bacteremia due to Stenotrophomonas maltophilia: an analysis of 45 episodes. J Infect 45:47–53PubMedCrossRefGoogle Scholar
  25. 25.
    Crum NF, Utz GC, Wallace MR (2002) Stenotrophomonas maltophilia endocarditis. Scand J Infect Dis 34:925–927PubMedCrossRefGoogle Scholar
  26. 26.
    Padilla D, Cubo T, Romero MD, Pardo R, Martin J, Chmielewski J, Hernandez J (2002) Infección nosocomial por Stenotrophomonas maltophilia en enfermos intervenidos quirúrgicamente. Enferm Infecc Microbiol Clin 20:187–190Google Scholar
  27. 27.
    Platsouka E, Routsi C, Chalkis A, Dimitriadou E, Paniara O, Roussos C (2002) Stenotrophomonas maltophilia meningitis, bacteremia and respiratory infection. Scand J Infect Dis 34:391–392PubMedCrossRefGoogle Scholar
  28. 28.
    Sakhnini E, Weissmann A, Oren I (2002) Fulminant Stenotrophomonas maltophilia soft tissue infection in immunocompromised patients: an outbreak transmitted via tap water. Am J Med Sci 323:269–272PubMedCrossRefGoogle Scholar
  29. 29.
    Moser C, Jonsson V, Thomsen K, Albrectsen J, Hansen MM, Prag J (1997) Subcutaneous lesions and bacteremia due to Stenotrophomonas maltophilia in three leukaemic patients with neutropenia. Br J Dermatol 136:949–952PubMedCrossRefGoogle Scholar
  30. 30.
    Burns RL, Lowe L (1997) Xanthomonas maltophilia infection presenting as erythematous nodules. J Am Acad Dermatol 37:836–838PubMedGoogle Scholar
  31. 31.
    Vartivarian SE, Papadakis KA, Anaissie EJ (1996) Stenotrophomonas (Xanthomonas) maltophilia urinary tract infection. A disease that is usually severe and complicated. Arch Intern Med 156:433–435PubMedCrossRefGoogle Scholar
  32. 32.
    Fujita J, Yamadori I, Xu G, Hojo S, Negayama K, Miyawaki H, Yamaji Y, Takahara J (1996) Clinical features of Stenotrophomonas maltophilia pneumonia in immunocompromised patients. Respir Med 90:35–38PubMedCrossRefGoogle Scholar
  33. 33.
    Taylor G, McKenzie M, Buchanan-Chell M, Perry D, Chui L, Dasgupta M (1999) Peritonitis due to Stenotrophomonas maltophilia in patients undergoing chronic peritoneal dialysis. Perit Dial Int 19:259–262PubMedGoogle Scholar
  34. 34.
    Khan IA, Mehta NJ (2002) Stenotrophomonas maltophilia endocarditis: a systematic review. Angiology 53:49–55PubMedCrossRefGoogle Scholar
  35. 35.
    Wang WS, Liu CP, Lee CM, Huang FY (2004) Bacteremia in adults: four years’ experience in a medical center in northern Taiwan. J Microbiol Immunol Infect 37:359–365PubMedGoogle Scholar
  36. 36.
    Berg G, Roskot N, Smalla K (1999) Genotypic and phenotypic relationships between clinical and environmental isolates of Stenotrophomonas maltophilia. J Clin Microbiol 37:3594–3600PubMedGoogle Scholar
  37. 37.
    Nicodemo AC, Araujo MRE, Ruiz AS, Gales AC (2004) In vitro susceptibility of Stenotrophomonas maltophilia isolates: comparison of disc diffusion, E test and agar dilution methods. J Antimicrob Chemother 53:604–608PubMedCrossRefGoogle Scholar
  38. 38.
    Saino Y, Kobayashi F, Inoue M, Mitsuhashi S (1982) Purification and properties of inducible penicillin beta-lactamase isolated from Pseudomonas maltophilia. Antimicrob Agents Chemother 22:564–570PubMedGoogle Scholar
  39. 39.
    Crowder MW, Walsh TR, Banovic L, Pettit M, Spencer J (1998) Overexpression, purification and characterization of the cloned metallo-beta-lactamase L1 from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 42:921–926PubMedGoogle Scholar
  40. 40.
    Walsh TR, MacGowen AP, Bennett PM (1997) Sequence analysis and enzyme kinetics of the L2 serine beta-lactamase from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 41:1460–1464PubMedGoogle Scholar
  41. 41.
    Avison MB, Higgins CS, Von Heldreich CJ, Bennet PM, Walsh TR (2001) Plasmid location and molecular heterogeneity of the L1 and L2 beta-lactamase genes of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45:413–419PubMedCrossRefGoogle Scholar
  42. 42.
    Avison MB, Higgins CS, Ford PJ, von Heldreich CJ, Walsh TR, Bennet PM (2002) Differential regulation of L1 and L2 beta-lactamase expression in Stenotrophomonas maltophilia. J Antimicrob Chemother 49:387–389PubMedCrossRefGoogle Scholar
  43. 43.
    Avison MB, Higgins CS, Von Heldreich CJ, Bennet PM, Walsh TR (2000) A TEM-2beta-lactamase encoded on an active Tn1-like transposon in the genome of a clinical isolate of Stenotrophomonas maltophilia. J Antimicrob Chemother 46:879–884PubMedCrossRefGoogle Scholar
  44. 44.
    Alonso A, Martinez JL (2000) Cloning and characterization of SmeDEF, a novel multidrug efflux pump from Stenotrophomonas maltophilia. Antimicrob Agents Chemother 44:3079–3086PubMedCrossRefGoogle Scholar
  45. 45.
    Alonso A, Martinez JL (2001) Expression of multidrug efflux pump SmeDEF by clinical isolates of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 45:1879–1881PubMedCrossRefGoogle Scholar
  46. 46.
    Gould VC, Avison MB (2006) SmeDEF-mediated antimicrobial drug resistance in Stenotrophomonas maltophilia clinical isolates having defined phylogenetic relationships. J Antimicrob Chemother 57:1070–1076PubMedCrossRefGoogle Scholar
  47. 47.
    Sánchez P, Alonso A, Martinez JL (2002) Cloning and characterization of the smeT, a repressor of the Stenotrophomonas maltophilia multidrug efflux pump smeDEF. Antimicrob Agents Chemother 46:3386–3393PubMedCrossRefGoogle Scholar
  48. 48.
    Sánchez P, Alonso A, Martinez JL (2004) Regulatory regions of SmeDEF in Stenotrophomonas maltophilia strains expressing different amounts of the multidrug efflux pump smeDEF. Antimicrob Agents Chemother 48:2274–2276PubMedCrossRefGoogle Scholar
  49. 49.
    Li XZ, Zhang L, Poole K (2002) SmeC, an outer membrane multidrug efflux protein of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 46:333–343PubMedCrossRefGoogle Scholar
  50. 50.
    Chang LL, Chen HF, Chang CY, Lee TM, Wu WJ (2004) Contribution of integrons, and SmeABC and SmeDEF efflux pumps to multidrug resistance in clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 53:518–521PubMedCrossRefGoogle Scholar
  51. 51.
    Lambert T, Ploy MC, Denis F, Courvalin P (1999) Characterization of the chromosomal aac(6′)-Iz gene of Stenotrophomonas maltophilia. Antimicrob Agents Chemother 43:2366–2371PubMedGoogle Scholar
  52. 52.
    Li XZ, Zhang L, McKay GA, Poole K (2003) Role of the acetyltransferase AAC(6′)-Iz modifying enzyme in aminoglycoside resistance in Stenotrophomonas maltophilia. J Antimicrob Chemother 51:803–811PubMedCrossRefGoogle Scholar
  53. 53.
    Okazaki A, Avison MB (2004) Characterization of the Aph(3′)-IIa determinant of Stenotrophomonas maltophilia. In: 44th ICAAC, Abstract no. CI-1497Google Scholar
  54. 54.
    Poole K (2002) Outer membranes and efflux: the path to multidrug resistance in gram-negative bacteria. Curr Pharm Biotechnol 3:77–98PubMedCrossRefGoogle Scholar
  55. 55.
    Wheat PF, Winstanley TG, Spencer RC (1985) Effect of temperature on antimicrobial susceptibilities of Pseudomonas maltophilia. J Clin Pathol 38:1055–1058PubMedGoogle Scholar
  56. 56.
    Rahmati-Bahram A, Magee JT, Jackson SK (1995) Temperature-dependent variation of cell envelope lipids and antibiotic susceptibility in Stenotrophomonas (Xanthomonas) maltophilia. J Antimicrob Chemother 36:317–326PubMedCrossRefGoogle Scholar
  57. 57.
    Rahmati-Bahram A, Magee JT, Jackson SK (1996) Temperature-dependent aminoglycoside resistance in Stenotrophomonas (Xanthomonas) maltophilia; alterations in protein and lipopolysaccharide with growth temperature. J Antimicrob Chemother 37:665–676PubMedCrossRefGoogle Scholar
  58. 58.
    Rahmati-Bahram A, Magee JT, Jackson SK (1997) Effect of temperature on aminoglycoside binding sites in Stenotrophomonas maltophilia. J Antimicrob Chemother 39:19–24PubMedCrossRefGoogle Scholar
  59. 59.
    McKay GA, Woods DE, MacDonald KL, Poole K (2003) Role of phosphoglucomutase of Stenotrophomonas maltophilia in lipopolysaccharide biosynthesis, virulence, and antibiotic resistance. Infect Immun 71:3068–3075PubMedCrossRefGoogle Scholar
  60. 60.
    Magnet S, Blanchard JS (2005) Molecular insights into aminoglycoside action and resistance. Chem Rev 105:477–497PubMedCrossRefGoogle Scholar
  61. 61.
    Barbolla R, Catalano M, Orman BE, Famiglietti A, Vay C, Smayevsky J, Centron D, Piñeiro S (2004) Class 1 integrons increase trimethoprim-sulfamethoxazole MICs against epidemiologically unrelated Stenotrophomonas maltophilia isolates. Antimicrob Agents Chemother 48:666–669PubMedCrossRefGoogle Scholar
  62. 62.
    Costerton JW, Stewart PS, Greenberg EP (1999) Bacterial biofilms: a common cause of persistent infections. Science 284:1318–1322PubMedCrossRefGoogle Scholar
  63. 63.
    Clinical and Laboratory Standards Institute (2006) Performance standards for antimicrobial susceptibility testing: 16th informational supplement M100-S16. CLSI, Wayne, PAGoogle Scholar
  64. 64.
    Yao JD, Louie M, Louie L, Goodfellow J, Simor AE (1995) Comparison of E test and agar dilution for antimicrobial susceptibility testing of Stenotrophomonas maltophilia. J Clin Microbiol 33:1428–1430PubMedGoogle Scholar
  65. 65.
    Fadda G, Spanu T, Ardito F, Taddei C, Santangelo R, Siddu A, Ciccaglione D, Italian Epimiological Observatory (2004) Antimicrobial resistance among non-fermentative gram-negative bacilli isolated from the respiratory tracts of Italian inpatients: a 3-year surveillance study by the Italian Epidemiological Survey. Int J Antimicrob Agents 23:254–261PubMedCrossRefGoogle Scholar
  66. 66.
    Jones RN, Sader HS, Beach ML (2003) Contemporary in vitro spectrum of activity summary for antimicrobial agents tested against 18,569 strains non-fermentative gram-negative bacilli isolated in the SENTRY Antimicrobial Surveillance Program (19972001). Int J Antimicrob Agents 22:551–556PubMedCrossRefGoogle Scholar
  67. 67.
    Betriu C, Rodríguez-Avial I, Sánchez BA, Gómez M, Picazo JJ (2002) Comparative in vitro activities of tigecycline (GAR-936) and other antimicrobial agents against Stenotrophomonas maltophilia. J Antimicrob Chemother 50:758–759PubMedCrossRefGoogle Scholar
  68. 68.
    Gales AC, Jones RN, Forward KR, Linares J, Sader HS, Verhoef J (2001) Emerging importance of multidrug-resistant Acinetobacter species and Stenotrophomonas maltophilia as pathogens in seriously ill patients: geographic patterns, epidemiological features, and trends in the SENTRY Antimicrobial Surveillance Program (1997–1999). Clin Infect Dis 32(Suppl 2):104–113CrossRefGoogle Scholar
  69. 69.
    Herrero Romero M, Gómez Gómez MJ, Pachón Diaz J, Cisneros Herreros JM (2000) Bacteremias por Stenotrophomonas maltophilia: epidemiologia, caracteristicas clinicas y factores pronósticos. Rev Clín Esp 200:315–317PubMedGoogle Scholar
  70. 70.
    Schmitz FJ, Sadurski R, Verhoef J, Milatovic D, Fluit AC (2000) Typing of 154 clinical isolated of Stenotrophomonas maltophilia by pulsed-field gel electrophoresis and determination of the in vitro susceptibilities of these strains to 28 antibiotics. J Antimicrob Chemother 45:921–923PubMedCrossRefGoogle Scholar
  71. 71.
    Fass RJ, Barnishan J, Solomon M, Ayres LW (1996) In vitro activities of quinolones, β-lactams, tobramycin, and trimethoprim-sulfamethoxazole against nonfermentative gram-negative bacilli. Antimicrob Agents Chemother 40:1412–1418PubMedGoogle Scholar
  72. 72.
    Arpi M, Victor MA, Mortensen I, Gettschau A, Bruun B (1996) In vitro susceptibility of 124 Xanthomonas maltophilia (Stenotrophomonas maltophilia) isolates: comparison of the agar dilution method with the E-test and two agar diffusion methods. APMIS 104:108–114PubMedGoogle Scholar
  73. 73.
    Laing FP, Ramotar K, Read RR, Alfieri N, Kureishi A, Hendersen EA, Louie TJ (1995) Molecular epidemiology of Xanthomonas maltophilia colonization and infection in the hospital environment. J Clin Microbiol 33:513–518PubMedGoogle Scholar
  74. 74.
    Felegie TP, Yu VL, Rumans LW, Yee RB (1979) Susceptibility of Pseudomonas maltophilia to antimicrobial agents, singly and in combination. Antimicrob Agents Chemother 16:833–837PubMedGoogle Scholar
  75. 75.
    Traub WH, Leonhard B, Bauer D (1998) Antibiotic susceptibility of Stenotrophomonas (Xanthomonas) maltophilia: comparative (NCCLS criteria) evaluation of antimicrobial drugs with the agar dilution and the agar disk diffusion (Bauer-Kirby) tests. Chemotherapy 44:164–173PubMedCrossRefGoogle Scholar
  76. 76.
    Maningo E, Watanakunakorn C (1995) Xanthomonas maltophilia and Pseudomonas cepacia in lower respiratory tracts of patients in critical care units. J Infect 31:89–92PubMedCrossRefGoogle Scholar
  77. 77.
    Traub WH, Leonhard B, Bauer D (1998) Stenotrophomonas (Xanthomonas) maltophilia: in vitro susceptibility to selected antimicrobial drugs, single and combined, with and without defibrinated human blood. Chemotherapy 44:293–304PubMedCrossRefGoogle Scholar
  78. 78.
    Sader HS, Jones RN (2005) Antimicrobial susceptibility of uncommonly isolated non-enteric gram-negative bacilli. Int J Antimicrob Agents 25:95–109PubMedCrossRefGoogle Scholar
  79. 79.
    Carroll KC, Cohen S, Nelson R, Campbell DM, Claridge JD, Garrison MW, Kramp J, Malone C, Hoffmann M, Anderson DE (1998) Comparison of various in vitro susceptibility methods for testing Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 32:229–235PubMedCrossRefGoogle Scholar
  80. 80.
    Tsiodras S, Pittet D, Carmeli Y, Eliopoulos G, Boucher H, Harbarth S (2000) Clinical implications of Stenotrophomonas maltophilia resistant to trimethoprim-sulfamethoxazole: a study of 69 patients at 2 university hospitals. Scand J Infect Dis 32:651–656PubMedCrossRefGoogle Scholar
  81. 81.
    Lecso-Bornet M, Bergogne-Berezin E (1997) Susceptibility of 100 strains of Stenotrophomonas maltophilia to three β-lactam and five beta-lactam-beta-lactamase inhibitor combinations. J Antimicrob Chemother 40:717–720PubMedCrossRefGoogle Scholar
  82. 82.
    Muñoz Bellido JL, Muñoz Criado S, Garcia Garcia I, AlonsoManzanares MA, Gutierrez Zufiaurre MN, Garcia-Reodriguez JA (1997) In vitro activities of beta-lactam-beta-lactamase inhibitor combinations against Stenotrophomonas maltophilia: correlation between methods for testing inhibitory activity, time-kill curves, and bactericidal activity. Antimicrob Agents Chemother 41:2612–2615PubMedGoogle Scholar
  83. 83.
    Pankuch GA, Jacobs MR, Rittenhouse SF, Appelbaum PC (1994) Susceptibilities of 123 strains of Xanthomonas maltophilia to eight beta-lactams (including beta-lactam-beta-lactamase inhibitor combinations) and ciprofloxacin tested by five methods. Antimicrob Agents Chemother 38:2317–2322PubMedGoogle Scholar
  84. 84.
    Garcia Rodriguez JA, Garcia Sanchez JE, Garcia Garcia MI, Garcia Sanchez E, Muñoz Bellido JL (1991) Antibiotic susceptibility profile of Xanthomonas maltophilia in vitro activity of β-lactam/beta-lactamase inhibitor combinations. Diagn Microbiol Infect Dis 14:239–243PubMedCrossRefGoogle Scholar
  85. 85.
    Vartivarian S, Anaissie E, Bodey G, Sprigg H, Rolston K (1994) A changing pattern of susceptibility of Xanthomonas maltophilia to antimicrobial agents: implications for therapy. Antimicrob Agents Chemother 38:624–627PubMedGoogle Scholar
  86. 86.
    Garrison MW, Anderson DE, Campbell DM, Carroll KC, Malone CL, Anderson JD, Hallis RJ, Pfaller MA (1996) Stenotrophomonas maltophilia: emergence of multidrug-resistant strains during therapy and in an in vitro pharmacodynamic chamber model. Antimicrob Agents Chemother 40:2859–2864PubMedGoogle Scholar
  87. 87.
    Garcia Rodriguez JA, Garcia Sanchez JE, Muñoz Bellido JL, Muñoz Bellido JL, Garcia Garcia MI (1991) Kinetics of antimicrobial activity of aztreonam/clavulanic acid (2:1) against Xanthomonas maltophilia. J Antimicrob Chemother 27:552–554PubMedCrossRefGoogle Scholar
  88. 88.
    Sader HS, Pignatari AC, Frei R, Hollis RJ, Jones RN (1994) Pulsed-field gel electrophoresis of restriction-digested genomic DNA and antimicrobial susceptibility of Xanthomonas maltophilia strains from Brazil, Switzerland and the USA. J Antimicrob Chemother 33:615–618PubMedCrossRefGoogle Scholar
  89. 89.
    Khardori N, Elting L, Wong E, Schable B, Bodey GP (1990) Nosocomial infections due to Xanthomonas maltophilia (Pseudomonas maltophilia) in patients with cancer. Rev Infect Dis 12:997–1003PubMedGoogle Scholar
  90. 90.
    Gales AC, Reis AO, Jones RN (2001) Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. J Clin Microbiol 39:183–190PubMedCrossRefGoogle Scholar
  91. 91.
    Howe RA, Wilson MP, Walsh TR, Millar MR (1997) Susceptibility testing of Stenotrophomonas maltophilia to carbapenems. J Antimicrob Chemother 40:13–17PubMedCrossRefGoogle Scholar
  92. 92.
    Gesu GP, Marchetti F, Piccoli L, Cavallero A (2003) Levofloxacin and ciprofloxacin in vitro activities against 4,003 clinical bacterial isolates collected in 24 Italian laboratories. Antimicrob Agents Chemother 47:816–819PubMedCrossRefGoogle Scholar
  93. 93.
    Weiss K, Restieri C, De Carolis E, Laverdiere M, Guay H (2000) Comparative activity of new quinolones against 326 clinical isolates of Stenotrophomonas maltophilia. J Antimicrob Chemother 45:363–365PubMedCrossRefGoogle Scholar
  94. 94.
    Biedenbach DJ, Croco MA, Barrett TJ, Jones RN (1999) Comparative in vitro activity of gatifloxacin against Stenotrophomonas maltophilia and Burkholderia species isolates including evaluation of disk diffusion and E test methods. Eur J Clin Microbiol Infect Dis 18:428–431PubMedCrossRefGoogle Scholar
  95. 95.
    Giamarellos-Bourboulis EJ, Karnesis L, Galani I, Giamarellou H (2002) In vitro killing effect of moxifloxacin on clinical isolates of Stenotrophomonas maltophilia resistant to trimethoprim-sulfamethoxazole. Antimicrob Agents Chemother 46:3997–3999PubMedCrossRefGoogle Scholar
  96. 96.
    Valdezate S, Vindel A, Loza E, Baquero F, Canton R (2001) Antimicrobial susceptibilities of unique Stenotrophomonas maltophilia clinical strains. Antimicrob Agents Chemother 45:1581–1584PubMedCrossRefGoogle Scholar
  97. 97.
    Pankuch GA, Jacobs MR, Appelbaum PC (1994) Susceptibilities of 123 Xanthomonas maltophilia to clinafloxacin, PD 131628, PD 138312, PD 140248, ciprofloxacin, and ofloxacin. Antimicrob Agents Chemother 38:369–370PubMedGoogle Scholar
  98. 98.
    Cohn ML, Waites KB (2001) Antimicrobial activities of gatifloxacin against nosocomial isolates of Stenotrophomonas maltophilia measured by MIC and time-kill studies. Antimicrob Agents Chemother 45:2126–2128PubMedCrossRefGoogle Scholar
  99. 99.
    Ba BB, Feghali H, Arpin C, Saux MC, Quentin C (2004) Activities of ciprofloxacin and moxifloxacin against Stenotrophomonas maltophilia and emergence of resistant mutants in an in vitro pharmacokinetic-pharmacodynamic model. Antimicrob Agents Chemother 48:946–953PubMedCrossRefGoogle Scholar
  100. 100.
    Saiman L, Chen Y, Gabriel PS, Knirsch C (2002) Synergistic activities of macrolide antibiotics against Pseudomonas aeruginosa, Burkholderia cepacia, Stenotrophomonas maltophilia, and Alcaligenes xylosoxidans isolated from patients with cystic fibrosis. Antimicrob Agents Chemother 46:1105–1107PubMedCrossRefGoogle Scholar
  101. 101.
    Tripodi MF, Andreana A, Sarnataro G, Ragone E, Adinolfi LE, Utili R (2001) Comparative activities of isepamicin, amikacin, cefepime, and ciprofloxacin alone or in combination with other antibiotics against Stenotrophomonas maltophilia. Eur J Clin Microbiol Infect Dis 20:73–75PubMedCrossRefGoogle Scholar
  102. 102.
    Milatovic D, Schmitz FJ, Verhoef J, Fluit AC (2003) Activities of the glycylcycline tigecycline (GAR-936) against 1,924 recent European clinical bacterial isolates. Antimicrob Agents Chemother 47:400–404PubMedCrossRefGoogle Scholar
  103. 103.
    Sader HS, Jones RN, Dowzicky MJ, Frirische TR (2005) Antimicrobial activity of tigecycline tested against nosocomial bacterial pathogens from patients hospitalized in the intensive care unit. Diagn Microbiol Infect Dis 52:203–208PubMedCrossRefGoogle Scholar
  104. 104.
    Katz E, Demais AL (1977) The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41:449–474PubMedGoogle Scholar
  105. 105.
    Newton BA (1956) The properties and mode of action of the polymyxins. Bacteriol Rev 20:14–17PubMedGoogle Scholar
  106. 106.
    Schindler M, Osborn MJ (1979) Interaction of divalent cations and polymyxin B with lipopolysaccharide. Biochemistry 18:4425–4430PubMedCrossRefGoogle Scholar
  107. 107.
    Hermsen ED, Sullivan CJ, Rotschafer JC (2003) Polymyxins: pharmacology, pharmacokinetics, pharmacodynamics, and clinical applications. Infect Dis Clin North Am 17:545–562PubMedCrossRefGoogle Scholar
  108. 108.
    British Society for Antimicrobial Chemotherapy (2006) BSAC disc diffusion method for antimicrobial susceptibility testing, version 5. Cited January 2006
  109. 109.
    Zelenitsky SA, Iacovides H, Ariano RE, Harding GK (2005) Antibiotic combinations significantly more active than monotherapy in an in vitro infection model of Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 51:39–49PubMedCrossRefGoogle Scholar
  110. 110.
    Giamarellos-Bourboulis EJ, Karnesis L, Giamarellou H (2002) Synergy of colistin with rifampin and trimethoprim/sulfamethoxazole on multidrug-resistant Stenotrophomonas maltophilia. Diagn Microbiol Infect Dis 44:259–263PubMedCrossRefGoogle Scholar
  111. 111.
    Muñoz JL, García MI, Muñoz S, Leal S, Fajardo M, Garcia-Rodriguez JA (1996) Activity of trimethoprim/sulfamethoxazole plus polymyxin B against multiresistant Stenotrophomonas maltophilia. Eur J Clin Microbiol Infect Dis 15:879–882PubMedCrossRefGoogle Scholar
  112. 112.
    Dawis MA, Isenberg HD, France KA, Jenkins SG (2003) In vitro activity of gatifloxacin alone and combination with cefepime, meropemem, piperacillin and gentamicin against multidrug-resistant organisms. J Antimicrob Chemother 51:1203–1211PubMedCrossRefGoogle Scholar
  113. 113.
    Visalli MA, Jacobs MR, Appelbaum PC (1998) Activities of three quinolones, alone and in combination with extended-spectrum cephalosporins or gentamicin, against Stenotrophomonas maltophilia. Antimicrob Agents Chemother 42:2002–2005PubMedGoogle Scholar
  114. 114.
    Poulos CD, Matsumura SO, Willey BM, Low DE, McGeer A (1995) In vitro activities of antimicrobial combinations against Stenotrophomonas (Xanthomonas) maltophilia. Antimicrob Agents Chemother 39:2220–2223PubMedGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  1. 1.Department of Infectious DiseasesUniversity of São Paulo Medical SchoolSão PauloBrazil
  2. 2.São PauloBrazil

Personalised recommendations