Advertisement

Variations of agar screen tests for detection of methicillin resistance in staphylococci: focus on cefoxitin

  • L. R. R. PerezEmail author
  • A. L. S. Antunes
  • A. L. Barth
  • P. A. d’Azevedo
Concise Article

Abstract

Members of the genus Staphylococcus are among the most important human pathogens, and strains demonstrating resistance to methicillin are an increasing problem worldwide, both within and outside of hospital environments. The objective of this study was to evaluate the use of variations of agar screening tests with cefoxitin and oxacillin to detect methicillin resistance in staphylococcal isolates. The agar screening test with cefoxitin (4 μg/ml) showed 99.4% accuracy for detecting both S. aureus and coagulase-negative staphylococci. The performance of the agar screening test with cefoxitin (4 μg/ml) either equaled or was superior to the other agar screening test variations evaluated and can be used to characterize the presence of the mecA gene among staphylococcal species.

Keywords

Cefoxitin Oxacillin Methicillin Resistance mecA Gene Cephamycin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors are grateful to the bacteriology laboratories of each participating hospital for their collaboration. This research work was supported in part by CAPES, CNPq and FFFCMPA. The experiments used in this study comply with the current laws of Brazil.

References

  1. 1.
    Chambers HF (2001) The changing epidemiology of Staphylococcus aureus? Emerg Infect Dis 7:178–182PubMedCrossRefGoogle Scholar
  2. 2.
    Foster TJ (2004) The Staphylococcus aureus "superbug". J Clin Invest 114:1693–1696PubMedCrossRefGoogle Scholar
  3. 3.
    Marshall SA, Wilke WW, Pfaller MA, Jones RN (1998) Staphylococcus aureus and coagulase-negative staphylococci from bloodstream infections: frequency of occurrence, antimicrobial susceptibility, and molecular (mecA) characterization of oxacillin resistance in the SCOPE program. Diagn Microbiol Infect Dis 30:205–214PubMedCrossRefGoogle Scholar
  4. 4.
    Lowy FD (2003) Antimicrobial resistance: the example of Staphylococcus aureus. J Clin Invest 111:1265–1273PubMedCrossRefGoogle Scholar
  5. 5.
    Sader HS, Jones RN, Gales AC, Silva JB, Pignatari AC (2004) SENTRY antimicrobial surveillance program report: Latin American and Brazilian results for 1997 through 2001. Braz J Infect Dis 8:25–79PubMedCrossRefGoogle Scholar
  6. 6.
    Felten A, Grandry B, Lagrange PH, Casin I (2002) Evaluation of three techniques for detection of low-level methicillin-resistant Staphylococcus aureus (MRSA): a disk diffusion method with cefoxitin and moxalactam, the Vitek 2 system, and the MRSA-screen latex agglutination test. J Clin Microbiol 40:2766–2771PubMedCrossRefGoogle Scholar
  7. 7.
    Bannerman T (2003) Staphylococcus M, and other catalase-positive cocci that grow aerobically. In: Murray PR, Baron EJ, Jorgensen JH, Pfaller MA, Yolken RH (eds). Manual of clinical microbiology. American Society of Microbiology, Washington, DC, pp 384–404Google Scholar
  8. 8.
    Steers E, Foltz EL, Graves BS (1959) An inoculator replicator apparatus for routine testing of bacterial susceptibility to antibiotics. Antibiot Chemother 27:307–311Google Scholar
  9. 9.
    Clinical and Laboratory Standard Institute /(NCCLS) (2006) Performance standards for antimicrobial susceptibility testing. 15th informational supplement. M100-S15. CSLI/(NCCLS), Wayne, PAGoogle Scholar
  10. 10.
    Caierao J, Musskopf M, Superti S, Roesch E, Dias CG, d’Azevedo PA (2004) Evaluation of phenotypic methods for methicillin resistance characterization in coagulase-negative staphylococci (CNS). J Med Microbiol 53:1195–1199PubMedCrossRefGoogle Scholar
  11. 11.
    Vannuffel P, Laterre PF, Bouyer M, Gigi J, Vandercam B, Reynaert M, Gala JL (1998) Rapid and specific molecular identification of methicillin-resistant Staphylococcus aureus in endotracheal aspirates from mechanically ventilated patients. J Clin Microbiol 36:2366–2368PubMedGoogle Scholar
  12. 12.
    McKinney TK, Sharma VK, Craig WA, Archer GL (2001) Transcription of the gene mediating methicillin resistance in Staphylococcus aureus (mecA) is corepressed but not coinduced by cognate mecA and beta-lactamase regulators. J Bacteriol 183:6862–6868PubMedCrossRefGoogle Scholar
  13. 13.
    Berger-Bachi B, Rohrer S (2002) Factors influencing methicillin resistance in staphylococci. Arch Microbiol 178:165–171PubMedCrossRefGoogle Scholar
  14. 14.
    Cauwelier B, Gordts B, Descheemaecker P, Van Landuyt H (2004) Evaluation of a disk diffusion method with cefoxitin (30 microg) for detection of methicillin-resistant Staphylococcus aureus. Eur J Clin Microbiol Infect Dis 23:389–392PubMedCrossRefGoogle Scholar
  15. 15.
    Sharp SE, Warren JA, Thomson Jr RB (2005) Cefoxitin disk diffusion screen for confirmation of oxacillin-resistant Staphylococcus aureus isolates and utility in the clinical laboratory. Diagn Microbiol Infect Dis 51:69–71PubMedCrossRefGoogle Scholar
  16. 16.
    Skov R, Smyth R, Clausen M, Larsen AR, Frimodt-Moller N, Olsson-Liljequist B, Kahlmeter G (2003) Evaluation of a cefoxitin 30 microg disc on Iso-Sensitest agar for detection of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 52:204–207PubMedCrossRefGoogle Scholar
  17. 17.
    Swenson JM, Tenover FC (2005) Results of disk diffusion testing with cefoxitin correlate with presence of mecA in Staphylococcus spp. J Clin Microbiol 43:3818–3823PubMedCrossRefGoogle Scholar
  18. 18.
    Velasco D, del Mar Tomas M, Cartelle M, Beceiro A, Perez A, Molina F, Moure R, Villanueva R, Bou G (2005) Evaluation of different methods for detecting methicillin (oxacillin) resistance in Staphylococcus aureus. J Antimicrob Chemother 55:379–382PubMedCrossRefGoogle Scholar
  19. 19.
    Fernandes CJ, Fernandes LA, Collignon P (2005) Cefoxitin resistance as a surrogate marker for the detection of methicillin-resistant Staphylococcus aureus. J Antimicrob Chemother 55:506–510PubMedCrossRefGoogle Scholar
  20. 20.
    Amaral MM, Coelho LR, Flores RP, Souza RR, Silva-Carvalho MC, Teixeira LA, Ferreira-Carvalho BT, Figueiredo AM (2005) The predominant variant of the Brazilian epidemic clonal complex of methicillin-resistant Staphylococcus aureus has an enhanced ability to produce biofilm and to adhere to and invade airway epithelial cells. J Infect Dis 192:801–810PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag 2007

Authors and Affiliations

  • L. R. R. Perez
    • 2
    Email author
  • A. L. S. Antunes
    • 2
  • A. L. Barth
    • 1
  • P. A. d’Azevedo
    • 2
  1. 1.Microbiology Unit, Clinical Pathology ServiceHospital de Clínicas de Porto AlegrePorto AlegreBrazil
  2. 2.Microbiology DepartmentFundação Faculdade Federal de Ciências Médicas de Porto AlegrePorto AlegreBrazil

Personalised recommendations