Effect of inappropriate initial empiric antibiotic therapy on outcome of patients with community-acquired intra-abdominal infections requiring surgery

  • K. KrobotEmail author
  • D. Yin
  • Q. Zhang
  • S. Sen
  • A. Altendorf-Hofmann
  • J. Scheele
  • W. Sendt


To assess the significance of initial empiric parenteral antibiotic therapy in patients requiring surgery for community-acquired secondary peritonitis, 425 patients hospitalized between January 1999 and September 2001 in 20 clinics across Germany were followed for a total of 6,521 patient days. Perforated appendix (38%), colon (27%), or gastroduodenum (22%) were the most common sites of infection. Escherichia coli was the most common pathogen. A total of 54 (13%) patients received inappropriate initial parenteral therapy not covering all bacteria isolated, or not covering both aerobes and anaerobes in the absence of culture results. Clinical success, predefined as the infection resolving with initial or step-down therapy after primary surgery, was achieved in 322 patients (75.7%; 95% confidence interval (CI), 70.6–81.2). Patients were more likely to have clinical success if initial antibiotic therapy was appropriate (78.6%; 95% CI, 73.6–83.9) rather than inappropriate (53.4%; 95% CI, 41.1–69.3). Patients having clinical success were estimated to stay 13.9 days in hospital (95% CI, 13.1–14.7), while those who had clinical failure stayed 19.8 days (95% CI, 17.3–22.3). In conclusion, appropriateness of initial parenteral antibiotic therapy was a predictor of clinical success, which in turn was associated with length of stay.


Antibiotic Therapy Appendicitis Diverticulitis Clinical Success Clinical Failure 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support: This study was supported by a grant to Kendle GmbH & Co. GMI KG, Munich, for data collection.

Potential conflict of interest: Merck & Co., Inc., is a manufacturer of antibiotics used in 4% of the study population.

Participating centers (no. of patients): Prof. Dr. med. Baca, Zentralkrankenhaus Bremen-Ost (20); Prof. Dr. med. Becker, Universitätsklinikum Tübingen (26); Prof. Dr. med. Castrup, Kliniken der Landeshauptstadt Düsseldorf (19); Dr. med. Dommisch, Klinikum Schwerin (21); PD Dr. med. Dittrich, Kreiskrankenhaus Rendsburg (22); Prof. Dr. med. Farthmann, Universitätsklinikum Freiburg (20); Prof. Dr. med. Gebhardt, Klinikum Nürnberg (20); Prof. Dr. med. Grimm, Universitätsklinikum Justus-Liebig-Universität, Giessen (18); Prof. Dr. med. Hohenberger, Universitätsklinik Erlangen (25); Prof. Dr. med. Kempf, Stadtkrankenhaus Rüsselsheim (22); Prof. Dr. med. Meyer, Städtisches Klinikum Solingen (24); Prof. Dr. med. Post, Klinikum Mannheim GmbH (22); Prof. Dr. Scheele, Klinikum der Friedrich-Schiller-Universität Jena (25); Prof. Dr. med. Schilling Universitätsklinik des Saarlandes, Homburg/Saar (23); Prof. Dr. Dr. h.c. Schumpelick, Universitätsklinikum Aachen (16); Prof. Dr. med. Stahlschmidt, St. Vincenz- und Elisabeth-Hospital, Mainz (18); Prof. Dr. med. Thiede, Bayerische Julius-Maximilians-Universität, Würzburg (17); Prof. Dr. med. Valesky, Klinikum Stadt Hanau (26); Dr. med. Wiedmann, Klinikum des Landkreises Neumarkt/Oberpfalz (20); Dr. med. Zaage, Berufsgenossenschaftliche Kliniken Bergmannstrost, Halle (21).


  1. 1.
    Pacelli P, Doglietto GB, Alfieri S, Piccioni E, Sgadari A, Gui D, Crucitti F (1996) Prognosis in intra-abdominal infections. Multivariate analysis on 604 patients. Arch Surg 131:641–645PubMedGoogle Scholar
  2. 2.
    Christou NV, Turgeon P, Wassef R, Rotstein O, Bohnen J, Potvin M (1996) Management of intra-abdominal infections. The case for intraoperative cultures and comprehensive broad-spectrum antibiotic coverage. Arch Surg 131:1193–1201PubMedGoogle Scholar
  3. 3.
    Bohnen JMA, Solomkin JS, Dellinger EP, Bjornson HS, Page CP (1992) Guidelines for clinical care: anti-infective agents for intra-abdominal infection. Arch Surg 127:83–89PubMedGoogle Scholar
  4. 4.
    Solomkin JS, Hemsell DL, Sweet R, Tally F, Bartlett J (1992) Evaluation of new antifungal drugs for the treatment of intraabdominal infections. Clin Infect Dis 15(Suppl 1):33–42PubMedGoogle Scholar
  5. 5.
    Hopkins JA, John CH, Wilson SE (1993) Susceptibility of intra-abdominal isolates at operation: a predictor of postoperative infection. Am Surg 59:791–796PubMedGoogle Scholar
  6. 6.
    Kollef MH, Sherman G, Ward S, Fraser V (1999) Inadequate antimicrobial treatment of infections. A risk factor for hospital mortality among critically ill patients. Chest 115:462–474CrossRefPubMedGoogle Scholar
  7. 7.
    Kollef MH, Ward S (1998) The influence of mini-BAL cultures on patient outcomes: implications for the antibiotic management of ventilator-associated pneumonia. Chest 113:412–420PubMedGoogle Scholar
  8. 8.
    Luna CM, Vujacich P, Niederman MS, Vay C, Gherardi C, Matera J, Jolly EC (1997) Impact of BAL data on the therapy and outcome of ventilator-associated pneumonia. Chest 111:676–685PubMedGoogle Scholar
  9. 9.
    Mosdell DM, Morris DM, Voltura A, Pitcher DE, Twiest MW, Milne RL, Miscall GB, Fry DE (1991) Antibiotic treatment for surgical peritonitis. Ann Surg 214:543–549PubMedGoogle Scholar
  10. 10.
    Davey P, Libby G, Hunter K, Broomhall J, Kofteridid D (2001) How important is appropriate empirical antibiotic treatment for intra-abdominal infections? Value Health 4:126–127Google Scholar
  11. 11.
    Luna CM, Famiglietti A, Absi R, Videla AJ, Nogueira FJ, Fuenzalida AD, Gene RJ (2000) Community-acquired pneumonia. Etiology, epidemiology, and outcome at a teaching hospital in Argentina. Chest 118:1344–1354CrossRefPubMedGoogle Scholar
  12. 12.
    Der Bundesminister für Gesundheit (ed) (1993) Internationale Klassifikation der Krankheiten (ICD), 9. Revision, 2nd edn. Kohlhammer, KölnGoogle Scholar
  13. 13.
    DIMDI (ed) Internationale Klassifikation der Krankheiten und verwandter Gesundheitsprobleme (ICD), 10 Revision. Bd II, Diagnosenthesaurus Version 3.0. Kohlhammer, KölnGoogle Scholar
  14. 14.
    Greenland S, Drescher K (1993) Maximum likelihood estimation of the attributable fraction from logistic models. Biometrics 49:865–872PubMedGoogle Scholar
  15. 15.
    Collet D (1994) Modeling survival data in medical research. Chapman & Hall, London, p 123Google Scholar
  16. 16.
    Klein JP, Moeschberger ML (1997) Survival analysis: techniques for censored and truncated data. Springer, New York Berlin Heidelberg, p 110Google Scholar
  17. 17.
    Chabot I, Yin D, Iskedjian M (2002) Effect of inappropriate initial antibiotic therapy on outcomes of patients hospitalized with complicated intra-abdominal infections in Canada. In: Program and abstracts, 40th Annual Meeting of Infectious Disease Society of America (abstract no. 604)Google Scholar
  18. 18.
    Cattan P, Rotman N, Houssin D (2004) Outcomes of empiric antibiotic therapy for hospitalized patients with community-acquired intra-abdominal infection. Eur J Clin Microbiol Infect Dis (in press)Google Scholar
  19. 19.
    Bare M, Castells X, Garcia A (2002) Excess mortality associated with inappropriate initial empiric antibiotic therapy in patients undergoing surgery for intra-abdominal infection. Clin Microbiol Infect 8(Suppl 1):30Google Scholar
  20. 20.
    Arlington medical resources (2000) The hospital anti-infective market guide. German edition. Arlington Medical Resources, Malvern, p 1 (Table 126)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag 2004

Authors and Affiliations

  • K. Krobot
    • 1
    Email author
  • D. Yin
    • 2
  • Q. Zhang
    • 2
  • S. Sen
    • 2
  • A. Altendorf-Hofmann
    • 3
  • J. Scheele
    • 3
  • W. Sendt
    • 4
  1. 1.Outcomes ResearchMSD Sharp & Dohme GmbHHaarGermany
  2. 2.Merck & Co., Inc.Whitehouse StationUSA
  3. 3.Department of General SurgeryFriedrich-Schiller-University of JenaJenaGermany
  4. 4.Department of SurgeryKrankenhaus St Joseph-Stift GmbHBremenGermany

Personalised recommendations