, Volume 36, Issue 3, pp 129–141 | Cite as

A posteriori error estimates¶for nonconforming finite element schemes

  • Guido Kanschat
  • Franz-Theo Suttmeier


We derive a posteriori error estimates for nonconforming discretizations of Poisson's and Stokes' equations. The estimates are residual based and make use of weight factors obtained by a duality argument. Crouzeix-Raviart elements on triangles and rotated bilinear elements are considered. The quadrilateral case involves the introduction of additional local trial functions. We show that their influence is of higher order and that they can be neglected. The validity of the estimate is demonstrated by computations for the Laplacian and for Stokes' equations.


Error Estimate Weight Factor Posteriori Error Trial Function Posteriori Error Estimate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Italia 1999

Authors and Affiliations

  • Guido Kanschat
    • 1
  • Franz-Theo Suttmeier
    • 2
  1. 1.Institut für Angewandte Mathematik, Universität Heidelberg, Im Neuenheimer Feld 294, 69120 Heidelberg, Germany¶E-mail: kanschat@iwr.uni-heidelberg.deDE
  2. 2.Universität Dortmund, Fachbereich Mathematik, Lehrstuhl X, Vogelpothsweg 87,¶44221 Dortmund, Germany¶E-mail: suttmeier@iwr.uni-heidelberg.deDE

Personalised recommendations