Advertisement

Calcolo

, 56:50 | Cite as

A new recursive formulation of the Tau method for solving linear Abel–Volterra integral equations and its application to fractional differential equations

  • Y. Talaei
  • S. ShahmoradEmail author
  • P. Mokhtary
Article
  • 3 Downloads

Abstract

In this paper, the recursive approach of the Tau method is developed for numerical solution of Abel–Volterra type integral equations. Due to the singular behavior of solutions of these equations, the existing spectral approaches suffer from low accuracy. To overcome this drawback we use Müntz–Legendre polynomials as basis functions which have remarkable approximation to functions with singular behavior at origin and express Tau approximation of the exact solution based on a sequence of basis canonical polynomials that is generated by a simple recursive formula. We also provide a convergence analysis for the proposed method and obtain an exponential rate of convergence regardless of singularity behavior of the exact solution. Some examples are given to demonstrate the effectiveness of the proposed method. The results are compared with those obtained by existing numerical methods, thereby confirming the superiority of our scheme. The paper is closed by providing application of this method to approximate solution of a linear fractional integro-differential equation.

Keywords

Abel–Volterra integral equations Convergence analysis Müntz polynomials Recursive Tau method 

Mathematics Subject Classification

45D05 78M22 45E10 

Notes

References

  1. 1.
    Brunner, H.: Polynomial spline collocation methods for Volterra integro-differential equations with weakly singular kernels. IMA J. Numer. Anal. 6, 221–239 (1986)MathSciNetCrossRefGoogle Scholar
  2. 2.
    Ma, J.T., Jiang, Y.J.: On a graded mesh method for a class of weakly singular Volterra integral equations. J. Comput. Appl. Math. 231, 807–814 (2009)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Shen, J., Sheng, C.T., Wang, Z.Q.: Generalized Jacobi spectral-Galerkin method for nonlinear Volterra integral equations with weakly singular kernels. J. Math. Study 48, 315–329 (2015)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Sohrabi, S., Ranjbar, H., Saei, M.: Convergence analysis of the Jacobi-collocation method for nonlinear weakly singular Volterra integral equations. Appl. Math Comput. 299, 141–152 (2017)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Diogo, T., Franco, N.B., Lima, P.: high order product integration methods for a Volterra integral equation with logarithmic singular kernel. Commun. Pure Appl. Anal. 3, 217–235 (2004)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Diogo, T.: Collocation and iterated collocation methods for a class of weakly singular Volterra integral equations. J. Comput. Appl. Math. 229, 363–372 (2009)MathSciNetCrossRefGoogle Scholar
  7. 7.
    Yong, Z.X.: Jacobi spectral method for the second-kind Volterra integral equations with a weakly singular kernel. Appl. Math. Model. 39(15), 4421–4431 (2015)MathSciNetCrossRefGoogle Scholar
  8. 8.
    Chen, Y., Tang, T.: Convergence analysis of the Jacobi spectral-collocation methods for Volterra integral equations with a weakly singular kernel. Math. Comput. 79, 147–167 (2010)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lighthill, J.M.: Contributions to the theory of the heat transfer through a laminar boundary layer. Proc. R. Soc. Lond. 202A, 359–377 (1950)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Gorenflo, R., Vessella, S.: Abel Integral Equations: Analysis and Applications. Springer, Berlin (1991)CrossRefGoogle Scholar
  11. 11.
    De, S., Mandal, B.N., Chakrabarti, A.: Use of Abel integral equations in water wave scattering by two surface piercing barriers. Wave Motion 47(5), 279–288 (2010)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Kumar, S., Kumar, A., et al.: Analytical solution of Abel integral equation arising in astrophysics via Laplace transform. J. Egypt. Math. Soc. 23, 102–107 (2015)MathSciNetCrossRefGoogle Scholar
  13. 13.
    Brunner, H.: Collocation Methods for Volterra Integral and Related Functional Equations Methods. Cambridge University Press, Cambridge (2004)zbMATHGoogle Scholar
  14. 14.
    Sadri, K., Amini, A., Cheng, C.: A new operational method to solve Abel’s and generalized Abel’s integral equations. Int. J. Appl. Math. Comput. 317, 49–67 (2018)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Vanani, S.K., Soleyman, F.: Tau approximate solution of weakly singular Volterra integral equations. Math. Comput. Model. 57, 494–502 (2013)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Sahu, P.K., Ray, S.S.: A novel Legendre wavelet Petrov-Galerkin method for fractional Volterra integro-differential equations. Comput. Math. Appl. (2016).  https://doi.org/10.1016/j.camwa.2016.04.042 CrossRefGoogle Scholar
  17. 17.
    Lanczos, C.: Trigonometric interpolation of empirical and analytic functions. J. Math. Phys. 17, 123–199 (1938)CrossRefGoogle Scholar
  18. 18.
    Lanczos, C.: Applied Analysis. Prentice-hall, Englewood Cliffs (1956)zbMATHGoogle Scholar
  19. 19.
    Ortiz, E.: The Tau method. SIAM J. Numer. Anal. 6, 480–492 (1969)MathSciNetCrossRefGoogle Scholar
  20. 20.
    El-Daou, M.K., Al-hamad, K.M.: Computation of the canonical polynomials and applications to some optimal control problems. Numer. Algorithms 61, 545–566 (2012)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Ortiz, E., Samara, L.: An operational approach to the Tau method for the numerical solution of nonlinear differential equations. Computing 27(1), 15–25 (1981)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Pour Mahmoud, J., Rahimi Ardabili, M.Y., Shahmorad, S.: Numerical solution of the system of Fredholm integro-differential equations by the Tau method. Appl. Math. Comput 168, 465–478 (2005)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Shahmorad, S.: Numerical solution of the general form linear Fredholm–Volterra integro-differential equations by the Tau method with an error estimation. Appl. Math. Comput. 167(2), 1418–1429 (2005)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Hosseini, S.A., Shahmorad, S., Talati, F.: A matrix based method for two dimensional nonlinear Volterra–Fredholm integral equations. Numer. Algorithms 68, 511–529 (2015)MathSciNetCrossRefGoogle Scholar
  25. 25.
    Bunchaft, M.E.: Some extensions of the Lanczos–Ortiz theory of canonical polynomials in the tau method. Math. Comput. 66(218), 609–621 (1997)MathSciNetCrossRefGoogle Scholar
  26. 26.
    Pinkus, A.: Weierstrass and approximation theory. J. Approx. Theory. 107, 1–66 (2000)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Borwein, P., Erdelyi, T., Zhang, J.: Müntz systems and orthogonal Müntz–Legendre polynomials. Trans. Am. Math. Soc. 342(2), 523–542 (1994)zbMATHGoogle Scholar
  28. 28.
    Milovanovic, G.V.: Müntz orthogonal polynomials and their numerical evaluation, Applications and computation of orthogonal polynomials. Int. Ser. Numer. Math. 131, 179–194 (1999)zbMATHGoogle Scholar
  29. 29.
    Mokhtary, P., Ghoreishi, F., Srivastava, H.M.: The Müntz–Legendre Tau method for fractional differential equations. Appl. Math. Model. 40, 671–684 (2016)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Abdalkhani, J.: A numerical approach to the solution of Abel integral equations of the second kind with nonsmooth solution. J. Comput. Appl. Math. 29, 249–255 (1990)MathSciNetCrossRefGoogle Scholar
  31. 31.
    Micula, S.: An iterative numerical method for fractional integral equations of the second kind. J. Comput. Appl. Math. 339, 124–133 (2018)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Ghoreishi, F., Hosseini, S.M.: The Tau method and a new preconditioner. J. Comput. Appl. Math. 163, 351–379 (2004)MathSciNetCrossRefGoogle Scholar
  33. 33.
    Matos, J.C., Matos, J.M.A., Rodrigues, M.J.: Solving differential and integral equations with Tau method. Math. Comput. Sci. 12(2), 197–205 (2018) MathSciNetCrossRefGoogle Scholar
  34. 34.
    Diethelm, K.: The Analysis of Fractional Differential Equations. Lectures Notes in Mathematics. Springer, Berlin (2010)CrossRefGoogle Scholar
  35. 35.
    Zhao, J., Xiao, J., Ford, N.J.: Collocation methods for fractional integro-differential equations with weakly singular kernels. Numer. Algorithms 65(4), 723–743 (2014)MathSciNetCrossRefGoogle Scholar
  36. 36.
    Wang, Y., Zhu, L., Wang, Z.: Fractional-order Euler functions for solving fractional integro-differential equations with weakly singular kernel. Adv. Differ. Equ. (2018).  https://doi.org/10.1186/s13662-018-1699-3 MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    El-Daou, M.K., Ortiz, E.: Error analysis of the Tau method: dependence of the error on the degree and on the length of the interval of approximation. Comput. Math. Appl. 25(7), 33–45 (1993)MathSciNetCrossRefGoogle Scholar
  38. 38.
    Rudin, W.: Principles of Mathematical Analysis. McGraw-Hill, New York (1976)zbMATHGoogle Scholar

Copyright information

© Istituto di Informatica e Telematica (IIT) 2019

Authors and Affiliations

  1. 1.Department of Applied Mathematics, Faculty of Mathematical ScienceUniversity of TabrizTabrizIran
  2. 2.Department of Mathematics, Faculty of Basic SciencesSahand University of TechnologyTabrizIran

Personalised recommendations