Advertisement

Calcolo

, 56:49 | Cite as

Mixed finite element discretizations of acoustic Helmholtz problems with high wavenumbers

  • T. Chaumont-FreletEmail author
Article
  • 23 Downloads

Abstract

We study the acoustic Helmholtz equation with impedance boundary conditions formulated in terms of velocity, and analyze the stability and convergence properties of lowest-order Raviart-Thomas finite element discretizations. We focus on the high-wavenumber regime, where such discretizations suffer from the so-called “pollution effect”, and lack stability unless the mesh is sufficiently refined. We provide wavenumber-explicit mesh refinement conditions to ensure the well-posedness and stability of discrete scheme, as well as wavenumber-explicit error estimates. Our key result is that the condition “\(k^2 h\) is sufficiently small”, where k and h respectively denote the wavenumber and the mesh size, is sufficient to ensure the stability of the scheme. We also present numerical experiments that illustrate the theory and show that the derived stability condition is actually necessary.

Keywords

Helmholtz problems Mixed finite elements Pollution effect 

Mathematics Subject Classification.

35J05 65N12 65N15 65N30 

Notes

References

  1. 1.
    Adams, R.A., Fournier, J.J.: Sobolev Spaces, 2nd edn. Academic Press, Cambridge (2003)zbMATHGoogle Scholar
  2. 2.
    Babuška, I., Sauter, S.A.: Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers? SIAM J. Numer. Anal. 34(6), 2392–2423 (1997)MathSciNetCrossRefGoogle Scholar
  3. 3.
    Chaumont-Frelet, T., Nicaise, S.: High-frequency behaviour of corner singularities in Helmholtz problems. ESAIM Math. Model. Numer. Anal. 5, 1803–1845 (2018)MathSciNetCrossRefGoogle Scholar
  4. 4.
    Chaumont-Frelet, T., Nicaise, S.: Wavenumber explicit convergence analysis for finite element discretizations of general wave propagation problems, IMA J. Numer. Anal. (2019).  https://doi.org/10.1093/imanum/drz020
  5. 5.
    Chaumont-Frelet, T., Nicaise, S., Pardo, D.: Finite element approximation of electromagnetic fields using nonfitting meshes for Geophysics. SIAM J. Numer. Anal. 56(4), 2288–2321 (2018)MathSciNetCrossRefGoogle Scholar
  6. 6.
    Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. SIAM, Philadelphia (2002)CrossRefGoogle Scholar
  7. 7.
    Colton, D., Kress, R.: Inverse Acoustic and Electromagnetic Scattering Theory. Springer, New York (2012)zbMATHGoogle Scholar
  8. 8.
    Colton, D., Kress, R.: Integral Equation Methods in Scattering Theory. SIAM, Philadelphia (2013)CrossRefGoogle Scholar
  9. 9.
    Costabel, M.: A remark on the regularity of solutions of Maxwell’s equations on Lipschitz domains. Math. Meth. Appl. Sci. 12, 365–368 (1990)MathSciNetCrossRefGoogle Scholar
  10. 10.
    Dauge, M.: Elliptic Boundary Value Problems on Corner Domains. Springer, New York (1988)CrossRefGoogle Scholar
  11. 11.
    Dhia, A.B.-B., Duclairoir, E., Legendre, G., Mercier, J.: Time-harmonic acoustic propagation in the presence of a shear flow. J. Comput. Appl. Math. 204, 428–439 (2007)MathSciNetCrossRefGoogle Scholar
  12. 12.
    Diaz, J.: Approches analytiques et numériques de problèmes de transmission en propagation d’ondes en régime transitoire. Application au couplage fluide-structure et aux méthodes de couches parfaitement adaptées, Ph.D. Thesis, Paris 6, (2005)Google Scholar
  13. 13.
    Engquist, B., Majda, A.: Absorbing boundary conditions for the numerical simulation of waves. Math. Comput. 31(139), 629–651 (1977)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Ern, A., Guermond, J.L.: Mollification in strongly Lipshitz domains with application to continuous and discrete De Rham complexes. Comput. Methods Appl. Math. 16(1), 51–75 (2016)MathSciNetCrossRefGoogle Scholar
  15. 15.
    Ern, A., Guermond, J.L.: Analysis of the edge finite element approximation of the Maxwell equations with low regularity solutions. Comput. Math. Appl. 75, 918–932 (2018)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gastaldi, L.: Mixed finite element methods in fluid structure systems. Numer. Math. 74, 153–176 (1996)MathSciNetCrossRefGoogle Scholar
  17. 17.
    Girault, V., Raviart, P.A.: Finite Element Methods for Navier–Stokes Equations. Springer, New York (1986)CrossRefGoogle Scholar
  18. 18.
    Grisvard, P.: Elliptic Problems in Nonsmooth Domains. Pitman, Boston (1985)zbMATHGoogle Scholar
  19. 19.
    Hetmaniuk, U.: Stability estimates for a class of Helmholtz problems. Commun. Math. Sci. 5(3), 665–678 (2007)MathSciNetCrossRefGoogle Scholar
  20. 20.
    Ihlenburg, F., Babuška, I.: Finite element solution of the Helmholtz equation with high wave number. Part I: the \(h\)-version of the FEM. Comput. Math. Appl. 30(9), 9–37 (1995)MathSciNetCrossRefGoogle Scholar
  21. 21.
    Melenk, J.M., Sauter, S.: Wavenumber explicit convergence analysis for Galerkin discretizations of the Helmholtz equation. SIAM J. Numer. Anal. 49(3), 1210–1243 (2011)MathSciNetCrossRefGoogle Scholar
  22. 22.
    Monk, P.: Finite Element Methods for Maxwell’s Equations. Oxford Science Publications, Oxford (2003)CrossRefGoogle Scholar
  23. 23.
    Nédélec, J.C.: Mixed finite elements in \(\mathbb{R}^3\). Numer. Math. 35, 315–341 (1980)MathSciNetCrossRefGoogle Scholar
  24. 24.
    Payne, L.E., Weinberger, H.F.: An optimal Poincaré inequality for convex domains. Arch. Ration. Mech. Anal. 5(1), 286–292 (1960)CrossRefGoogle Scholar
  25. 25.
    Raviart, P.A., Thomas, J.M.: A Mixed Finite Element Method for 2nd Order Elliptic Problems, Mathematical Aspect of Finite Element Methods. Springer, New York (1977)zbMATHGoogle Scholar
  26. 26.
    Retka, S., Marburg, S.: An infinite element for the solution of Galbrun equation. Z. Angew. Math. Mech. 93(2–3), 154–162 (2013)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Schatz, A.H.: An observation concerning Ritz–Galerkin methods with indefinite bilinear forms. Math. Comput. 28(128), 959–962 (1974)MathSciNetCrossRefGoogle Scholar
  28. 28.
    Schoberl, J.: Commuting quasi-interpolation operators for mixed finite elements, Technical report preprint ISC-01-10-MATH, Texas A & M Univertsity (2001)Google Scholar
  29. 29.
    Singer, I., Turkel, E.: High-order finite difference methods for the Helmholtz equation. Comput. Methods Appl. Mech. Eng. 163, 343–358 (1998)MathSciNetCrossRefGoogle Scholar
  30. 30.
    Tartar, L.: An Introduction to Sobolev Spaces and Interpolation Spaces. Springer, New York (2007)zbMATHGoogle Scholar
  31. 31.
    Wang, X., Bathe, K.: On mixed elements for acoustic fluid–structure interactions. Math. Models Methods Appl. Sci. 7(3), 329–343 (1997)MathSciNetCrossRefGoogle Scholar
  32. 32.
    Zhong, L., Shu, S., Wittum, G., Xu, J.: Optimal error estimates for Nédélec edge elements for time-harmonic Maxwell’s equations. J. Comput. Math. 27(5), 563–572 (2009)MathSciNetCrossRefGoogle Scholar

Copyright information

© Istituto di Informatica e Telematica (IIT) 2019

Authors and Affiliations

  1. 1.Inria Sophia Antipolis MéditerranéeValbonneFrance
  2. 2.Laboratoire J.A. Dieudonné UMR CNRS 7351, Parc ValroseNiceFrance

Personalised recommendations